Inclusive review of Zinc Oxide Nanoparticles and Silver Nanoparticles: Properties and Applications

Mohanad Jawad Kadhim (1) , Mais E. Ahmed (2)
(1) Department of Medical Biotechnology, College of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq , Iraq
(2) Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq , Iraq

Abstract

Here, we discuss numerous valuable properties and functions of Zinc Oxide (ZnO) and Silver (Ag) nanoparticles, giving the readers a chance to understand the importance of the nanoparticles in activities including antifungal, antiviral, antimicrobial, and as antioxidants. ZnO nano-particulates, which are considered dual function materials because of their semiconducting and piezoelectric characteristics, have also been utilized in many fields, for example cosmetics, water purification and textiles due to their ability to kill microorganism and UV blocking attributions. Silver nanoparticles, due to their unique optical properties and having very high antibacterial efficacy utilization in medical applications like other drug delivery systems and potent agents in the removal of cancer cells has been known for a long time. Just as one nanoparticle is synthesized through green chemistry while the other goes through the clean, and green manufacturing process, showing sustainability and eco-friendliness through chemistry. Having overviewed the biomedical uses of nanoparticles generally they are being applied in drug delivery system, tissue engineering, and cancer diagnosis and treatment. In addition, the nanoparticles’ antibacterial, antifungal, and antiviral mechanisms of action are analyzed and their potential antioxidant effects which pave the way towards therapeutic interventions of diseases connected with oxidative stress are examined as well.

Full text article

Generated from XML file

References

Abbasi, M., Arab‐Bafrani, Z., Zabihi, E., Babaei, A., Jafari, S. M., Barani, M., & Mousavi, E. (2023). Inhibitory effect of zinc oxide nanoparticles and fibrillar chitosan‐zinc oxide nanostructures against herpes simplex virus infection. The Journal of Engineering, 2023(6), e12268.

Abo-Shama, U. H., El-Gendy, H., Mousa, W. S., Hamouda, R. A., Yousuf, W. E., Hetta, H. F., & Abdeen, E. E. (2020). Synergistic and Antagonistic Effects of Metal Nanoparticles in Combination with Antibiotics Against Some Reference Strains of Pathogenic Microorganisms. Infection and drug resistance, 13, 351–362.

AbouAitah, K., Allayh, A. K., Wojnarowicz, J., Shaker, Y. M., Swiderska-Sroda, A., & Lojkowski, W. (2021). Nanoformulation composed of ellagic acid and functionalized zinc oxide nanoparticles inactivates DNA and RNA viruses. Pharmaceutics, 13(12), 2174.

Ahamad, I., Bano, F., Anwer, R., Srivastava, P., Kumar, R., & Fatma, T. (2022). Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Frontiers in Microbiology, 12, 741493.

Alavi, M., & Nokhodchi, A. (2021). Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discovery Today, 26(8), 1953-1962.

Alhujaily, M., Albukhaty, S., Yusuf, M., Mohammed, M. K., Sulaiman, G. M., Al-Karagoly, H., ... & AlMalki, F. A. (2022). Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering, 9(10), 541.

Ali, H. R., Emam, A. N., Hefny, E. G., Koraney, N. F., Mansour, A. S., Salama, A. M., ... & Shahein, M. A. (2021). Silver nanoparticles enhance the effectiveness of traditional antibiotics against S. aureus causing bovine mastitis within the safety limit. Journal of Nanoparticle Research, 23, 1-18.

Alsuraifi, A. (2020). Metallic nanoparticles in dental biomaterials: A review. INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 3(1), 27-37.

Anwar, S. H. (2018). A brief review on nanoparticles: types of platforms, biological synthesis and applications. Res. Rev. J. Mater. Sci, 6, 109-116.

Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., & Hano, C. (2021). Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers, 13(18), 4570.

Ayipo, Y. O., Bakare, A. A., Badeggi, U. M., Jimoh, A. A., Lawal, A., & Mordi, M. N. (2022). Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. Current research in chemical biology, 2, 100021.

Azam, S. E., Yasmeen, F., Rashid, M. S., & Latif, M. F. (2022). Physical factors affecting the antibacterial activity of Silver (Ag) and Zinc Oxide (ZnO) nanoparticles (NPs), there application in edible and inedible food packaging, and regulation in food products.

Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., & Jurga, S. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12(1), 8148.

Borehalli Mayegowda, S., Roy, A., NG, M., Pandit, S., Alghamdi, S., Almehmadi, M., ... & Sharma, R. (2023). Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review. Frontiers in Cellular and Infection Microbiology, 13, 1224778.

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver Nanoparticles and Their Antibacterial Applications. International journal of molecular sciences, 22(13), 7202.

Campos, A., Troc, N., Cottancin, E., Pellarin, M., Weissker, H. C., Lermé, J., ... & Hillenkamp, M. (2019). Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments. Nature Physics, 15(3), 275-280.

Chen, F. C., Huang, C. M., Yu, X. W., & Chen, Y. Y. (2022). Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Human & experimental toxicology, 41, 09603271221080236.

Chen, Y. Y., Lee, Y. H., Wang, B. J., Chen, R. J., & Wang, Y. J. (2022). Skin damage induced by zinc oxide nanoparticles combined with UVB is mediated by activating cell pyroptosis via the NLRP3 inflammasome–autophagy–exosomal pathway. Particle and fibre toxicology, 19, 1-22.

Cooper, G. M. (2000). The central role of enzymes as biological catalysts. Sinauer Associates.

Crane, M. J., Devine, S., & Jamieson, A. M. (2021). Graphene oxide/silver nanoparticle ink formulations rapidly inhibit influenza A virus and OC43 coronavirus infection in vitro. bioRxiv, 2021-02.

Dhaka, A., Mali, S. C., Sharma, S., & Trivedi, R. (2023). A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 101108.

Ehsan, M., Waheed, A., Ullah, A., Kazmi, A., Ali, A., Raja, N. I., Mashwani, Z. U., Sultana, T., Mustafa, N., Ikram, M., & Li, H. (2022). Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. BioMed research international, 2022, 1215183.

Engwa, G. A., Nweke, F. N., & Nkeh-Chungag, B. N. (2022). Free radicals, oxidative stress-related diseases and antioxidant supplementation. Alternative Therapies in Health & Medicine, 28(1).

Fayed, B., Jayakumar, M. N., & Soliman, S. S. (2021). Caspofungin-resistance in Candida auris is cell wall-dependent phenotype and potential prevention by zinc oxide nanoparticles. Medical Mycology, 59(12), 1243-1256.

Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689-709.

Frei, A., Verderosa, A. D., Elliott, A. G., Zuegg, J., & Blaskovich, M. A. (2023). Metals to combat antimicrobial resistance. Nature Reviews Chemistry, 7(3), 202-224.

Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in biotechnology, 74, 21-31.

Guerrero-Arguero, I., Khan, S. R., Henry, B. M., Garcia-Vilanova, A., Chiem, K., Ye, C., ... & Nagy, A. M. (2023). Mitigation of SARS-CoV-2 by using transition metal Nanozeolites and quaternary ammonium compounds as antiviral agents in suspensions and soft fabric materials. International journal of nanomedicine, 2307-2324.

Gupta, J., Irfan, M., Ramgir, N., Muthe, K. P., Debnath, A. K., Ansari, S., Gandhi, J., Ranjith-Kumar, C. T., & Surjit, M. (2022). Antiviral Activity of Zinc Oxide Nanoparticles and Tetrapods Against the Hepatitis E and Hepatitis C Viruses. Frontiers in microbiology, 13, 881595.

Halarnekar, D., Ayyanar, M., Gangapriya, P., Kalaskar, M., Redasani, V., Gurav, N., ... & Gurav, S. (2023). Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. International Journal of Biological Macromolecules, 242, 124764.

Hamad, A. M., & Atiyea, Q. M. (2021, May). In vitro study of the effect of zinc oxide nanoparticles on Streptococcus mutans isolated from human dental caries. In Journal of Physics: Conference Series (Vol. 1879, No. 2, p. 022041). IOP Publishing.

Hasan, M., Zafar, A., Imran, M., Iqbal, K. J., Tariq, T., Iqbal, J., ... & Shu, X. (2022). Crest to trough cellular drifting of green-synthesized zinc oxide and silver nanoparticles. ACS omega, 7(39), 34770-34778.

Hemdan, B. A., El-Naggar, M. E., Abd-Elgawad, S. E., El Zawawy, N. A., & Mahmoud, Y. A. G. (2023). Bacterial cell-free metabolites-based zinc oxide nanoparticles for combating skin-causing bacterial infections. Biomass Conversion and Biorefinery, 1-14.

Hernández-Díaz, J. A., Garza-García, J. J., Zamudio-Ojeda, A., León-Morales, J. M., López-Velázquez, J. C., & García-Morales, S. (2021). Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. Journal of the science of food and agriculture, 101(4), 1270–1287.

Hou, J., Zhao, L., Tang, H., He, X., Ye, G., Shi, F., Kang, M., Chen, H., & Li, Y. (2021). Silver Nanoparticles Induced Oxidative Stress and Mitochondrial Injuries Mediated Autophagy in HC11 Cells Through Akt/AMPK/mTOR Pathway. Biological trace element research, 199(3), 1062–1073.

Huang, Y. T., Cai, S. Y., Ruan, X. L., Chen, S. Y., Mei, G. F., Ruan, G. H., & Cao, D. D. (2021). Salicylic acid enhances sunflower seed germination under Zn2+ stress via involvement in Zn2+ metabolic balance and phytohormone interactions. Scientia Horticulturae, 275, 109702.

Irfan, M., Munir, H., & Ismail, H. (2021). Moringa oleifera gum based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSA. Biomaterials research, 25(1), 17.

Islam, F., Shohag, S., Uddin, M. J., Islam, M. R., Nafady, M. H., Akter, A., ... & Cavalu, S. (2022). Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials, 15(6), 2160.

Jian, Y., Chen, X., Ahmed, T., Shang, Q., Zhang, S., Ma, Z., & Yin, Y. (2022). Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. Journal of advanced research, 38, 1-12.

Jiang, Z., Liu, B., Yu, L., Tong, Y., Yan, M., Zhang, R., ... & Li, W. (2023). Research progresses in preparation methods and applications of zinc oxide nanoparticles. Journal of Alloys and Compounds, 170316.

Jomehzadeh, N., Koolivand, Z., Dahdouh, E., Akbari, A., Zahedi, A., & Chamkouri, N. (2021). Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia Atlantica Resin. Materials Today Communications, 27, 102457.

Joshi, K. M., Shelar, A., Kasabe, U., Nikam, L. K., Pawar, R. A., Sangshetti, J., ... & Chaskar, M. G. (2022). Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Biomaterials Advances, 134, 112592.

Khan, F., Shariq, M., Asif, M., Siddiqui, M. A., Malan, P., & Ahmad, F. (2022). Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials (Basel, Switzerland), 12(4), 673.

Kim, I., Viswanathan, K., Kasi, G., Sadeghi, K., Thanakkasaranee, S., & Seo, J. (2020). Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens. Microbial Pathogenesis, 149, 104290.

Kong, J., Zhang, S., Shen, M., Zhang, J., & Yoganathan, S. (2022). Evaluation of copper (I)-doped zinc oxide composite nanoparticles on both gram-negative and gram-positive bacteria. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643, 128742.

Kruithoff, C., Gamal, A., McCormick, T. S., & Ghannoum, M. A. (2023). Dermatophyte Infections Worldwide: Increase in Incidence and Associated Antifungal Resistance. Life, 14(1), 1.

Li, H., Duan, S., Li, L., Zhao, G., Wei, L., Zhang, B., ... & Lu, M. (2024). Bio‐Responsive Sliver Peroxide‐Nanocarrier Serves as Broad‐Spectrum Metallo‐β‐lactamase Inhibitor for Combating Severe Pneumonia. Advanced Materials, 36(11), 2310532.

Li, L., Bi, Z., Hu, Y., Sun, L., Song, Y., Chen, S., ... & Wei, X. (2021). Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell biology and toxicology, 37(2), 177-191.

Li, M. R., Liu, F. F., Wang, S. C., Cheng, X., Zhang, H., Huang, T. Y., & Liu, G. Z. (2020). Phototransformation of zinc oxide nanoparticles and coexisting pollutant: Role of reactive oxygen species. Science of The Total Environment, 728, 138335.

Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., Lau, G. K., & Che, C. M. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral therapy, 13(2), 253–262.

Luceri, A., Francese, R., Lembo, D., Ferraris, M., & Balagna, C. (2023). Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms, 11(3), 629.

Madani, M., Hosny, S., Alshangiti, D. M., Nady, N., Alkhursani, S. A., Alkhaldi, H., ... & Gaber, G. A. (2022). Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes. Nanotechnology Reviews, 11(1), 731-759.

Malawong, S., Thammawithan, S., Sirithongsuk, P., Daduang, S., Klaynongsruang, S., Wong, P. T., & Patramanon, R. (2021). Silver nanoparticles enhance antimicrobial efficacy of antibiotics and restore that efficacy against the melioidosis pathogen. Antibiotics, 10(7), 839.

Malik, M. A., Batterjee, M. G., Kamli, M. R., Alzahrani, K. A., Danish, E. Y., & Nabi, A. (2022). Polyphenol-capped biogenic synthesis of noble metallic silver nanoparticles for antifungal activity against Candida auris. Journal of Fungi, 8(6), 639.

Mangion, S. E., Holmes, A. M., & Roberts, M. S. (2021). Targeted delivery of zinc pyrithione to skin epithelia. International Journal of Molecular Sciences, 22(18), 9730.

Mare, A. D., Man, A., Ciurea, C. N., Toma, F., Cighir, A., Mareș, M., ... & Tanase, C. (2021). Silver nanoparticles biosynthesized with spruce bark extract—a molecular aggregate with antifungal activity against Candida species. Antibiotics, 10(10), 1261.

Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. D. M. R., Lopes, P. R. M., de Moraes, P. B., ... & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific reports, 12(1), 2658.

Merkl, P., Long, S., McInerney, G. M., & Sotiriou, G. A. (2021). Antiviral activity of silver, copper oxide and zinc oxide nanoparticle coatings against SARS-CoV-2. Nanomaterials, 11(5), 1312.

Mikušová, V., & Mikuš, P. (2021). Advances in Chitosan-Based Nanoparticles for Drug Delivery. International journal of molecular sciences, 22(17), 9652.

Moorthy, K., Chang, K. C., Huang, H. C., Wu, W. J., & Chiang, C. K. (2023). Evaluating Antioxidant Performance, Biosafety, and Antimicrobial Efficacy of Houttuynia cordata Extract and Microwave-Assisted Synthesis of Biogenic Silver Nano-Antibiotics. Antioxidants, 13(1), 32.

Morales, P. Q., Machuca, L. L., Aguiluz, M. Q., Melendrez-Castro, M., Bello-Toledo, H., González-Rocha, G., ... & Sánchez-Sanhueza, G. (2021). Antibacterial Activity of Zinc Oxide Nanoparticles in Self-Curing Acrylic Resin Against Streptococcus mutans. Int. J. Odontostomat, 15(3), 694-701.

More, P. R., Pandit, S., Filippis, A., Franci, G., Mijakovic, I., & Galdiero, M. (2023). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2), 369.

Nakai, K., & Tsuruta, D. (2021). What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases?. International journal of molecular sciences, 22(19), 10799.

Nasrollahzadeh, M. S., Ghodsi, R., Hadizadeh, F., Maleki, M., Mashreghi, M., & Poy, D. (2022). Zinc oxide nanoparticles as a potential agent for antiviral drug delivery development: A systematic literature review. Current Nanoscience, 18(2), 147-153.

Naumenko, K., Zahorodnia, S., Pop, C. V., & Rizun, N. (2023). Antiviral activity of silver nanoparticles against the influenza A virus. Journal of Virus Eradication, 9(2), 100330.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763.

Puspasari, V., Ridhova, A., Hermawan, A., Amal, M. I., & Khan, M. M. (2022). ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosystems Engineering, 45(9), 1421-1445.

Reeder, N. L., Xu, J., Youngquist, R. S., Schwartz, J. R., Rust, R. C., & Saunders, C. W. (2011). The antifungal mechanism of action of zinc pyrithione. British Journal of Dermatology, 165(s2), 9-12.

Rehman, H., Ali, W., Khan, N. Z., Aasim, M., Khan, T., & Khan, A. A. (2023). Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities. Saudi Journal of Biological Sciences, 30(1), 103485.

Serag, E., & El-Zeftawy, M. (2021). Environmental aspect and applications of nanotechnology to eliminate COVID-19 epidemiology risk. Nanotechnology for Environmental Engineering, 6(1), 11.

Rios Ibarra, C. P., Salinas Santander, M., Orozco Nunnelly, D. A., & Bravo Madrigal, J. (2024). Nanoparticle based antiviral strategies to combat the influenza virus. Biomedical Reports, 20(4), 1-8.

Rodelo, C. G., Salinas, R. A., Jaime, E. A., Armenta, S., Galdámez-Martínez, A., Castillo-Blum, S. E., ... & Dutt, A. (2022). Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coordination Chemistry Reviews, 457, 214402.

Rohde, M. M., Snyder, C. M., Sloop, J., Solst, S. R., Donati, G. L., Spitz, D. R., ... & Singh, R. (2021). The mechanism of cell death induced by silver nanoparticles is distinct from silver cations. Particle and fibre toxicology, 18, 1-24.

Roy, A., Dharmalingam, K., & Anandalakshmi, R. (2022). Silver and zinc oxide nanoparticles in films and coatings. Biopolymer‐Based Food Packaging: Innovations and Technology Applications, 368-393.

Shabestarian, H., Tabrizi, M. H., Movahedi, M., Neamati, A., & Sharifnia, F. (2023). Green synthesis of Ag-NPs as a metal nanoparticle and ZnO-NPs as a metal oxide nanoparticle: Evaluation of the in vitro cytotoxicity, anti-oxidant, anti-angiogenic activities. Nanomedicine Journal, 10(3).

Sibiya, A., Jeyavani, J., Santhanam, P., Preetham, E., Freitas, R., & Vaseeharan, B. (2022). Comparative evaluation on the toxic effect of silver (Ag) and zinc oxide (ZnO) nanoparticles on different trophic levels in aquatic ecosystems: A review. Journal of Applied Toxicology, 42(12), 1890-1900.

Singh, G., Satija, P., Sharma, S., Gupta, S., & Singh, K. N. (2023). Organosilane as potent HIV-1 protease inhibitors and its hybrid silica nanoparticles as a “turn-off” fluorescent sensor for silver ion recognition. Inorganica Chimica Acta, 545, 121263.

Singh, R., Cheng, S., & Singh, S. (2020). Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech, 10(2), 66.

Singh, R., Cheng, S., & Singh, S. (2020). Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech, 10(2), 66.

Singh, T. A., Sharma, A., Tejwan, N., Ghosh, N., Das, J., & Sil, P. C. (2021). A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science, 295, 102495.

Singh, R., Smitha, M. S., & Singh, S. P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. Journal of nanoscience and nanotechnology, 14(7), 4745-4756.

Slavin, Y. N., & Bach, H. (2022). Mechanisms of antifungal properties of metal nanoparticles. Nanomaterials, 12(24), 4470

SUTJARITVORAKUL, T., IMSUWAN, P., DAMSUD, T., MEKSIRIPORN, B., & CHUTIPAIJIT, S. (2023). MYCO-MEDIATED SYNTHESIS AND α-GLUCOSIDASE INHIBITORY ACTIVITY OF SILVER NANOPARTICLES PRODUCED BY XYLARIACEOUS FUNGI. Applied Ecology & Environmental Research, 21(5).

Takáč, P., Michalková, R., Čižmáriková, M., Bedlovičová, Z., Balážová, Ľ., & Takáčová, G. (2023). The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?. Life (Basel, Switzerland), 13(2), 466.

Tan, E. P., Djearamane, S., Wong, L. S., Rajamani, R., Tanislaus Antony, A. C., Subbaih, S. K., ... & Selvaraj, S. (2022). An In Vitro Study of the Antifungal Efficacy of Zinc Oxide Nanoparticles against Saccharomyces cerevisiae. Coatings, 12(12), 1988.

Thomsen, T., & Klok, H. A. (2021). Chemical cell surface modification and analysis of nanoparticle-modified living cells. ACS applied bio materials, 4(3), 2293-2306.

Varghese, R. M., S, A. K., & Shanmugam, R. (2024). Comparative Anti-inflammatory Activity of Silver and Zinc Oxide Nanoparticles Synthesized Using Ocimum tenuiflorum and Ocimum gratissimum Herbal Formulations. Cureus, 16(1), e52995.

Vere Hodge, A., & Field, H. J. (2011). General Mechanisms of Antiviral Resistance. Genetics and Evolution of Infectious Disease, 339–362.

Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C., & Yun, S. I. (2023). Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy. International journal of molecular sciences, 24(19), 14897.

Wiesmann, N., Mendler, S., Buhr, C. R., Ritz, U., Kämmerer, P. W., & Brieger, J. (2021). Zinc oxide nanoparticles exhibit favorable properties to promote tissue integration of biomaterials. Biomedicines, 9(10), 1462.

Xie, J., Li, H., Zhang, T., Song, B., Wang, X., & Gu, Z. (2023). Recent Advances in ZnO Nanomaterial-Mediated Biological Applications and Action Mechanisms. Nanomaterials (Basel, Switzerland), 13(9), 1500.

Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. International journal of nanomedicine, 15, 2555–2562.

Yoo, A., Lin, M., & Mustapha, A. (2021). Zinc oxide and silver nanoparticle effects on intestinal bacteria. Materials, 14(10), 2489.

Younis, A. B., Milosavljevic, V., Fialova, T., Smerkova, K., Michalkova, H., Svec, P., Antal, P., Kopel, P., Adam, V., Zurek, L., & Dolezelikova, K. (2023). Synthesis and characterization of TiO2 nanoparticles combined with geraniol and their synergistic antibacterial activity. BMC microbiology, 23(1), 207.

Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale research letters, 15(1), 115.

Zhang, W., Ye, G., Liao, D., Chen, X., Lu, C., Nezamzadeh-Ejhieh, A., Khan, M. S., Liu, J., Pan, Y., & Dai, Z. (2022). Recent Advances of Silver-Based Coordination Polymers on Antibacterial Applications. Molecules (Basel, Switzerland), 27(21), 7166.

Zhou, L., Zhao, X., Li, M., Lu, Y., Ai, C., Jiang, C., ... & Shi, J. (2021). Antifungal activity of silver nanoparticles synthesized by iturin against Candida albicans in vitro and in vivo. Applied microbiology and biotechnology, 105(9), 3759-3770.

Zhou, Z., Xie, A., Tan, Y., Zhang, J., & Xue, C. (2023). Vacuum-assisted thermal evaporation deposition for the preparation of AgNPs/NF 3D SERS substrates and their applications. New Journal of Chemistry, 47(46), 21225-21231.

Żyro, D., Sikora, J., Szynkowska-Jóźwik, M. I., & Ochocki, J. (2023). Silver, Its Salts and Application in Medicine and Pharmacy. International journal of molecular sciences, 24(21), 15723.

Authors

Mohanad Jawad Kadhim
Mais E. Ahmed
Kadhim, M. J. ., & Ahmed, M. E. . (2024). Inclusive review of Zinc Oxide Nanoparticles and Silver Nanoparticles: Properties and Applications. Journal of Current Medical Research and Opinion, 7(01), 2057–2078. https://doi.org/10.52845/CMRO/2024/7-1-11

Article Details