Investigating the Role of the Surface Protein Esp in the Pathogenesis of Enterococcal Urinary Tract Infections: Pathogenicity, Epidemiology, Prophylaxis, and Treatment

Sarah Hadi Saleh Nassif Al-Qaisi (1) , Safa Hussein Aliwi Al-Jumaili (2) , Doha Thamer Abbas Kazem Al-Sultani (3) , Ruaa Abass Ali AL-Tamimi (4)
(1) University of Anbar, College of Science, Department of Biology, Iraq , Iran, Islamic Republic of
(2) University of Anbar, College of Science, Department of Biology, Iraq , Iraq
(3) University of Babylon, College of Science, Department of Biology, Iraq , Iran, Islamic Republic of
(4) Al-Mustansiriya University, College of Science, Department of Biology, Iraq , Iraq

Abstract

There are a vast variety of uropathogens that can cause urinary tract infections (UTIs), which rank high among the infectious disease burden on a global scale. Enterococci are uropathogens that live in the gastrointestinal system and are Gram-positive, facultative anaerobic commensal organisms. Endocarditis and urinary tract infections (UTIs) are among the many healthcare-associated illnesses caused by Enterococcus spp. The overuse of antibiotics, particularly by enterococci, has led to a rise of multidrug-resistant bacteria in recent years. Furthermore, enterococcal infections are particularly difficult because of the enterococci's inherent resistance to antibiotics, genetic malleability, and ability to thrive in harsh settings. The overarching goal of this review is to bring attention to enterococci by highlighting their pathogenicity, epidemiology, and treatment suggestions (based on the most current guidelines).

Full text article

Generated from XML file

References

Kreft B, Marre R, Schramm U, Wirth R (January 1992). "Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells". Infection and Immunity. 60 (1): 25–30.

Huycke, M. M., D. F. Sahm, and M. S. Gilmore. 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg. Infect. Dis. 4:239–249.

Huycke, M. M., C. A. Spiegel, and M. S. Gilmore. 1991. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35:1626–1634.

Johnson, D. E., R. G. Russell, C. V. Lockatell, J. C. Zulty, J. W. Warren, and H. L. Mobley. 1993. Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infect. Immun. 61:2748–2754.

Johnson, J. R. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4:80–128.

Khan, A. S., B. Kniep, T. A. Oelschlaeger, I. Van Die, T. Korhonen, and J. Hacker. 2000. Receptor structure for F1C fimbriae of uropathogenic Escherichia coli. Infect. Immun. 68:3541–3547.

Kreft, B., R. Marre, U. Schramm, and R. Wirth. 1992. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60:25–30.

Lewis, C. M., and M. J. Zervos. 1990. Clinical manifestations of enterococcal infection. Eur. J. Clin. Microbiol. Infect. Dis. 9:111–117.

Li, J., D. L. Kasper, F. M. Ausubel, B. Rosner, and J. L. Michel. 1997. Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/ suicide vector results in attenuation of virulence and immunity in group B streptococcus. Proc. Natl. Acad. Sci. USA 94:13251–13256.

Mobley, H. L., M. D. Island, and G. Massad. 1994. Virulence determinants of uropathogenic Escherichia coli and Proteus mirabilis. Kidney Int. Suppl. 47:S129–S136. 20. Mobley, H. L. T. 2000. Virulence of the two primary uropathogens. ASM News 66:403–410.

Hirt H, Schlievert PM, Dunny GM (February 2002). "In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10". Infection and Immunity. 70 (2): 716–723.

Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP (June 2019). "Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism". Science. 364 (6445): eaau6323.

Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S (October 2019). "In search of novel protein drug targets for treatment of Enterococcus faecalis infections". Chemical Biology & Drug Design. 94 (4). Wiley: 1721–1739.

Amyes SG. "Enterococci and streptococci". International Journal of Antimicrobial Agents. 29 (Suppl 3): S43–S52.

Courvalin P (January 2006). "Vancomycin resistance in gram-positive cocci". Clinical Infectious Diseases. 42 (Suppl 1): S25–S34.

Zhanel GG, Hoban DJ, Karlowsky JA (January 2001). "Nitrofurantoin is active against vancomycin-resistant enterococci". Antimicrobial Agents and Chemotherapy. 45 (1): 324–326.

Arias CA, Contreras GA, Murray BE (June 2010). "Management of multidrug-resistant enterococcal infections". Clinical Microbiology and Infection. 16 (6): 555–562.

Dunny, G.M.; Hancock, L.E.; Shankar, N. Enterococcal Biofilm Structure and Role in Colonization and Disease. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Eds.; Eye and Ear Infirmary: Boston, MA, USA, 2014.

García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-

Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2018, 17, 82–94.

Delcaru, C.; Alexandru, I.; Podgoreanu, P.; Grosu, M.; Stavropoulos, E.; Chifiriuc, M.C.; Lazar, V. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies. Pathogens 2016, 5,

Tien, B.Y.Q.; Goh, H.M.S.; Chong, K.K.L.; Bhaduri-Tagore, S.; Holec, S.; Dress, R.; Ginhoux, F.; Ingersoll, M.A.; Williams, R.B.H.; Kline, K.A. Enterococcus faecalis Promotes Innate Immune Suppression and Polymicrobial Catheter-Associated Urinary Tract Infection. Infect. Immun. 2017, 85, e00378-17.

Sharma, A.K.; Dhasmana, N.; Dubey, N.; Kumar, N.; Gangwal, A.; Gupta, M. Bacterial Virulence Factors: Secreted for Survival. Indian J. Microbiol. 2016, 57, 1–10.

Shankar, N.; Lockatell, C.V.; Baghdayan, A.S.; Drachenberg, C.; Gilmore, M.S.; Johnson, D.E. Role of Enterococcus faecalis Surface Protein Esp in the Pathogenesis of Ascending Urinary Tract Infection. Infect. Immun. 2001, 69, 4366–4372.

Hashem, Y.A.; Abdelrahman, K.A.; Aziz, R.K. Phenotype–Genotype Correlations and Distribution of Key Virulence Factors in Enterococcus faecalis Isolated from Patients with Urinary Tract Infections. Infect. Drug Resist. 2021, 14, 1713–1723.

Süßmuth, S.D.; Muscholl-Silberhorn, A.; Wirth, R.; Susa, M.; Marre, R.; Rozdzinski, E. Aggregation Substance Promotes Adherence, Phagocytosis, and Intracellular Survival of Enterococcus faecalis within Human Macrophages and Suppresses Respiratory Burst. Infect. Immun. 2000, 68, 4900–4906.

Coburn, P.S.; Gilmore, M.S. The Enterococcus faecalis cytolysin: A novel toxin active against eukaryotic and prokaryotic cells. Cell. Microbiol. 2003, 5, 661–669.

Nallapareddy, S.R.; Qin, X.; Weinstock, G.M.; Höök, M.; Murray, B.E. Enterococcus faecalis Adhesin, Ace, Mediates Attachment to Extracellular Matrix Proteins Collagen Type IV and Laminin as well as Collagen Type I. Infect. Immun. 2000, 68, 5218–5224.

Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penade, R.; Lasa, I. The Enterococcal Surface Protein, Esp, Is Involved in Enterococcus faecalis Biofilm Formation. Appl. Environ. Microbiol. 2001, 67, 4538–4545.

Levitus, M.; Rewane, A.; Perera, T.B.; Vancomycin-Resistant Enterococci. PubMed. 2021.

Perichon, B.; Courvalin, P. VanA-Type Vancomycin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 4580–4587.

Chang, S.; Sievert, D.M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J. Infection with Vancomycin-Resistant Staphylococcus aureus Containing the van AResistance Gene. N. Engl. J. Med. 2003, 348, 1342–1347.

Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236.

Pogliano, J.; Pogliano, N.; Silverman, J.A. Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins. J. Bacteriol. 2012, 194, 4494–4504.

Naber, K.G.; Schito, G.; Botto, H.; Palou, J.; Mazzei, T. Surveillance Study in Europe and Brazil on Clinical Aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): Implications for Empiric Therapy. Eur. Urol. 2008, 54, 1164–1178.

Malmartel, A.; Ghasarossian, C. Epidemiology of urinary tract infections, bacterial species and resistances in primary care in France. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 447–451.

Seitz, M.; Stief, C.; Waidelich, R. Local epidemiology and resistance profiles in acute uncomplicated cystitis (AUC) in women: A prospective cohort study in an urban urological ambulatory setting. BMC Infect. Dis. 2017, 17, 685.

Laupland, K.B.; Ross, T.; Pitout, J.D.D.; Church, D.L.; Gregson, D.B. Community-onset Urinary Tract Infections: A Populationbased Assessment. Infection 2007, 35, 150–153.

Silva, A.; Costa, E.; Freitas, A.; Almeida, A. Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Antibiotics 2022, 11, 768.

Salm, J.; Salm, F.; Arendarski, P.; Kramer, T.S. High antimicrobial resistance in urinary tract infections in male outpatients in routine laboratory data, Germany, 2015 to 2020. Eurosurveillance 2022, 27, 2101012.

Xiong, S.; Liu, X.; Deng, W.; Zhou, Z.; Li, Y.; Tu, Y.; Chen, L.; Wang, G.; Fu, B. Pharmacological Interventions for Bacterial Prostatitis. Front. Pharmacol. 2020, 11, 504.

Che, B.; Zhang, W.; Xu, S.; Yin, J.; He, J.; Huang, T.; Li, W.; Yu, Y.; Tang, K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front. Oncol. 2021, 11, 5260.

Balzan, S.; de Almeida Quadros, C.; de Cleva, R.; Zilberstein, B.; Cecconello, I. Bacterial translocation: Overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 2007, 22, 464–471.

Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon. 2003 Feb;49(2):53-70. doi: 10.1067/mda.2003.7. PMID: 12601337.

Ramsey AM, Zilberberg MD. 2009. Secular trends of hospitalization with vancomycin-resistant enterococcus infection in the United States, 2000–2006. Infect Control Hosp Epidemiol 30:184–186.

Cole KA, Kenney RM, Perri MB, Dumkow LE, Samuel LP, Zervos MJ, Davis SL. Outcomes of Aminopenicillin Therapy for Vancomycin-Resistant Enterococcal Urinary Tract Infections. Antimicrob Agents Chemother. 2015 Dec;59(12):7362-6.

Williamson JC, Craft DW, Butts JD, Raasch RH. In vitro assessment of urinary isolates of ampicillin-resistant enterococci. Ann Pharmacother. 2002;36(2):246–250.

Dumkow LE, Perri MB, Zervos M. Time to stop using alternatives to ampicillin for enterococcal UTIs? In-vitro susceptibility trends for enterococcus urinary isolates over a one-year period in Detroit. Poster presented at: 53rd Interscience Conference of Antimicrobial Agents and Chemotherapy (ICAAC).

Authors

Sarah Hadi Saleh Nassif Al-Qaisi
Safa Hussein Aliwi Al-Jumaili
Doha Thamer Abbas Kazem Al-Sultani
Ruaa Abass Ali AL-Tamimi
Al-Qaisi, S. H. S. N., Al-Jumaili, S. H. A., Al-Sultani, D. T. A. K., & AL-Tamimi, R. A. A. (2024). Investigating the Role of the Surface Protein Esp in the Pathogenesis of Enterococcal Urinary Tract Infections: Pathogenicity, Epidemiology, Prophylaxis, and Treatment. Journal of Current Medical Research and Opinion, 7(06), 2749–2760. https://doi.org/10.52845/CMRO/2024/7-6-13

Article Details