Ability of the Hibiscus Plant to Absorb Carbon Dioxide Gas in Summer and Its Effect on Plant Pigments

Ameera O. Hussain Al-Janabi (1) , Sura Razzaq Manhee Al-Jaba (2)
(1) Medical Biotechnology, Al-Qasim Green University, Babylon. Iraq. , Iraq
(2) College of Environmental Sciences, Al-Qasim Green University, Babylon. Iraq. , Iraq

Abstract

The plants (H. tiliaceus) were exposed to gaseous pollutants CO2 and under controlled conditions represented by a greenhouse. The physiological changes of the plants were observed through equal time periods daily for a period of seven days. The process was repeated three times between the three exposures provide rest periods for the plant for a week. During summer exposure, it was found that the removal rate for plant H. tiliaceus 78.7%, during the exposure period. During summer exposure H. tiliaceus after the second and third exposure to CO2, whereas this concentration was decreased from 3.12 to 2.36 mg/g after the third exposure. The concentration of chlorophyll B was significantly decreased after the secondexposure of H. tiliaceus to CO2 from (4.93) to (1.91) mg/g, but this concentration was increased after the third exposure into 3.95 mg/g. There was no significant decrease in carotenoid concentration after the second exposure (with concentration 1.35 mg/g), but this concentration was returned decreased significantly to 2.8 mg/g after the third exposure to CO2.

Full text article

Generated from XML file

References

Ahmed, M. (2020). Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press,2011, 252 pp, ISBN-10: 0521173159. Elsevier.

Helldén, D., Andersson, C., Nilsson, M., Ebi, K. L., Friberg, P., & Alfvén, T. (2021). Climate change and childhealth: a scoping review and an expanded conceptual framework. The Lancet Planetary Health, 5(3), e164–e175.

Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792.

Raihan, A., & Tuspekova, A. (2022). Dynamic impacts of economic growth, energy use, urbanization, tourism,agricultural value-added, and forested area on carbon dioxide emissions in Brazil. Journal of Environmental Studies and Sciences, 12(4), 794–814.

van Wijngaarden, W. A., & Happer, W. (2023). Atmosphere and Greenhouse Gas Primer. ArXiv Preprint ArXiv:2303.00808.

Moon, T. A., Overeem, I., Druckenmiller, M., Holland, M., Huntington, H., Kling, G., Lovecraft, A. L., Miller,G., Scambos, T., & Schädel, C. (2019). The expanding footprint of rapid Arctic change. Earth’s Future, 7(3), 212–218.

Decuyper, M., Chávez, R. O., Čufar, K., Estay, S. A., Clevers, J. G. P. W., Prislan, P., Gričar, J., Črepinšek, Z., Merela, M., & De Luis, M. (2020). Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia–An integrated approach using remote sensing and tree-ring data. Agricultural and Forest Meteorology, 287, 107925.

Pausas, J. G., & Keeley, J. E. (2021). Wildfires and global change. Frontiers in Ecology and the Environment, 19(7), 387–395.

Makau, S. W. (2022). Principles of Global Environmental Responsibility. Available at SSRN 4187952.

Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E. B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., & Báez, J. C. (2021a). An overview of ocean climate change indicators: sea surface temperature,ocean heat content, ocean pH, dissolved oxygen concentration, Arctic Sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Frontiers inMarine Science, 8, 642372.

Jones, A. (2022). The health impacts of climate change: Why climate action is essential to protect health. Orthopaedics and Trauma.

Benjamin, G. C. (2020). Ensuring health equity during the COVID-19 pandemic: the role of public health infrastructure. In Revista Panamericana de Salud Pública (Vol. 44, p. e70). SciELO Public Health.

Hobbie, S. E., & Grimm, N. B. (2020). Nature-based approaches to managing climate change impacts in cities. Philosophical Transactions of the Royal Society B, 375(1794), 20190124.

Pauw, W. P., Castro, P., Pickering, J., & Bhasin, S. (2020). Conditional nationally determined contributions inthe Paris Agreement: foothold for equity or Achilles heel? Climate Policy, 20(4), 468–484.

Pörtner, H.-O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B.,& Biesbroek, R. (2022). Climate change 2022: Impacts, adaptation and vulnerability. IPCC Geneva, Switzerland.

BEQIRI, S. C. A., & HALILI, N. (n.d.). GLOBAL THREATS.

Al‐Ghussain, L. (2019). Global warming: Review on driving forces and mitigation. Environmental Progress & Sustainable Energy, 38(1), 13–21.

Ali, S. R. (2021). An overview on greenhouse effect. ACADEMICIA: An International Multidisciplinary Research Journal, 11(11), 994–1000.

Arosio, C., Rozanov, A., Malinina, E., Weber, M., & Burrows, J. P. (2019). Merging of ozone profiles from SCIAMACHY, OMPS and<? xmltexbreak?> SAGE II observations to study stratospheric ozone changes. Atmospheric Measurement Techniques, 12(4), 2423–2444.

Stallinga, P. (2019). Comprehensive analytical study of the greenhouse effect of the atmosphere. Atmosphericand Climate Sciences, 10(1), 40–80.

Gjermundsen, A., Nummelin, A., Olivié, D., Bentsen, M., Seland, Ø., & Schulz, M. (2021). Shutdown of Southern Ocean convection controls long-term greenhouse gas-induced warming. Nature Geoscience, 14(10), 724–731.

Siddik, M., Islam, M., Zaman, A., & Hasan, M. (2021). Current status and correlation of fossil fuelsconsumption and greenhouse gas emissions. Int. J. Energy Environ. Econ, 28, 103–119.

Tan, J., Lichtfouse, E., Luo, M., Liu, Y., Tan, F., Zhang, C., Chen, X., Huang, J., & Xiao, L. (2023). Aquaculture drastically increases methane production by favoring acetoclastic rather than hydrogenotrophic methanogenesis in shrimp pond sediments. Aquaculture, 563, 738999.

Chen, Y.-Y., Ishikawa, M., Suzuki, R., Ito, H., Kamachi, T., & Hori, K. (2020). Evaluation of methane degradation performance in microbial gas-phase reactions using effectively immobilized methanotrophs.Biochemical Engineering Journal, 154, 107441.

Adeoye, A. O., Adebayo, I. A., Afodun, A. M., & Ajijolakewu, K. A. (2022). Benefits and limitations of phytoremediation: Heavy metal remediation review. In Phytoremediation (pp. 227–238). Elsevier.

Yadav, D., & Kumar, P. (2019). Phytoremediation of hazardous radioactive wastes. In Assessment and Management of Radioactive and Electronic Wastes (p. 29). IntechOpen.

Kumari, R., Asmita, K., & Lal, S. P. (2022). Recommended Food for Wellbeing of Heart: World Heart Day Exclusive. A Monthly Peer Reviewed Magazine for Agriculture and Allied Sciences, 1

Anand, S., Hallsworth, J. E., Timmis, J., Verstraete, W., Casadevall, A., Ramos, J. L., Sood, U., Kumar, R., Hira, P., & Dogra Rawat, C. (2023). Weaponising microbes for peace. In Microbial Biotechnology. WileyOnline Library.

James, A. (2022). Phytoremediation of Urban Air Pollutants: Current Status and Challenges. Urban Ecology and Global Climate Change, 140–161.

Kumar, S., Prasad, S., & Yadav, K. K. (2019). Utilization of air pollutants by plants: need for present and future scrutiny. J Agric Food Chem, 67(10), 2741–2742.

Zhang, B., Cao, D., & Zhu, S. (2020). Use of plants to clean polluted air: a potentially effectiveand low-cost phytoremediation technology. BioResources, 15(3), 4650– 4654.

Parry, C., Blonquist Jr, J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyllconcentration: analysis of the optical/absolute relationship. Plant, Cell & Environment,37(11), 2508–2520.

Flexas, J., Díaz‐Espejo, A., Conesa, M. A., Coopman, R. E., Douthe, C., Gago, J., ... & Niinemets, Ü. (2016). Mesophyll conductance to CO2 and Rubisco as targets for improvingintrinsic water use efficiency in C3 plants. Plant, Cell & Environment, 39(5), 965-982.

Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, cell & environment, 30(3), 258-270.

Yang, Q., Li, P., Zhang, D., Lin, W., Hao, X. and Zong, Y., 2023. Effects of Elevated CO2 onthe Photosynthesis, Chlorophyll Fluorescence and Yield of Two Wheat Cultivars (Triticumaestivum L.) under Persistent Drought Stress. Sustainability, 15(2), p.1593.

Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T.A., Boote, K.J., Conway, D., Ruane, A.C., Gerten, D., Jones, J.W. and Khabarov, N., 2016. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change, 6(8), pp.786-790

Shanker, A.K., Gunnapaneni, D., Bhanu, D., Vanaja, M., Lakshmi, N.J., Yadav, S.K., Prabhakar, M. and Singh, V.K., 2022. Elevated CO2 and Water Stress in Combinationin Plants: Brothers in Arms or Partners in Crime?. Biology, 11(9), p.1330.

Dauda, M. (2019). Ecological Modernization Theory and Sustainable Development Dilemmas: Who benefits from technological innovation? The African Review: A Journal of African Politics, Development

Authors

Ameera O. Hussain Al-Janabi
Sura Razzaq Manhee Al-Jaba
Al-Janabi , A. O. H. ., & Manhee Al-Jaba , S. R. . (2024). Ability of the Hibiscus Plant to Absorb Carbon Dioxide Gas in Summer and Its Effect on Plant Pigments. Journal of Current Medical Research and Opinion, 7(03), 2173–2184. https://doi.org/10.52845/CMRO/2024/7-3-2

Article Details