Secondary Metabolite Products from Enterococcus faecalis Using GC/MS and In vitro Evaluation of Its Antimicrobial Activity of Some Medicinal Plant Extracts

Sabreen Abd Elameer Kamal (1) , Imad Hadi Hameed (2) , Ghadeer Ali Abdulhussein (3)
(1) Department of Biology, College of Science for women, University of Babylon, Iraq , Iran, Islamic Republic of
(2) College of Biotechnology, Al-Qasim Green University, Iraq , Iran, Islamic Republic of
(3) College of Biotechnology, Al-Qasim Green University, Iraq , Iran, Islamic Republic of

Abstract

ABSTRACT


Aims and Objective: The objectives of this study were to analyze Enterococcus faecalis bioactive chemical compounds and assess the antibacterial, antifungal, and in vitro antimicrobial activity of plant extracts on this organism.


Method: Gas chromatography-mass spectrometry (GC-MS) methods were used to investigate bioactives, which are chemical substances frequently referred to as secondary metabolites, before the in vitro antibacterial and antibacterial activity of the Enterococcus faecalis methanolic extract was assessed.


Results: The GC-MS investigation of Enterococcus faecalis demonstrated the presence of the following: 2-Butanol , 8,11-Octadecadiynoic acid , 6-Acetyl-β-d-mannose , Lactose , Cyclopropanebutanoic acid , 9-Hexadecenoic acid , E-11-Hexadecenoic acid , D-Glucose , α-D-Glucopyranoside , O-α-D-glucopyranosyl-(1.fwdarw.3)-β- ,2,3-dihydro-3,5-dihydroxy-6-methyl-, n-Hexadecanoic acid , 9-Octadecenoic acid , Octadecanoic acid , 9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol,(3β,5Z,7E)- 2(5H)-Furanone, D-Glucose, 6-O-α-D-galactopyranosyl, α-D-Glucopyranoside, Bicyclo[2.2.1]heptane-2-carboxylic acid isobutyl-amide, 2H-Oxecin-2-one.3.4.7.8.9.10-hexahydro-4-hydroxy-10-methyl, Maltol, D-Glucose,6-O-α-D-galactopyranosyl, 1-Gala-l-ido-octonic lactone, Acetamide , l-(+)-Ascorbic acid 2,6-dihexadecanoate, D-fructose , diethyl mercaptal , pentaacetate, Octadecanal ,2 –bromo, L-Ascorbic acid , 6-octadecanoate. Enterococcus faecalis metabolites was very highly active against Staphylococcus epidermidis (9.92±0.05). Enterococcus faecalis metabolites was very highly active against Alternaria alternate (10.00 ± 0.07). Cassia angustifolia   (Crude) (Crude) (10.48±0.13) was very highly active against Enterococcus faecalis

Full text article

Generated from XML file

References

REFERENCES
1. Arsène S., Leclercq R. Role of a qnr-Like Gene in the Intrinsic Resistance of Enterococcus faecalis to Fluoroquinolones. Antimicrobial Agents and Chemotherapy. 2007;51(9): 3254–3258.
2. Baden L. R., Thiemke W., Skolnik A., Chambers R., Strymish J., Moellering R. C. Jr, et al. Prolonged colonization with vancomycin-resistant Enterococcus faecium in long-term care patients and the significance of "clearance". Clinical Infectious Diseases. 2001; 33(10):1654–1660.
3. Bethea J. A., Walko C. M., Targos P. A. Treatment of vancomycin-resistant enterococcus with quinupristin/dalfopristin and high-dose ampicillin. Annals of Pharmacotherapy. 2004;38(6):989–991.
4. Cervera C., Castañeda X., Pericas J. M., Del Río A., de la Maria C. G., Mestres C., et al. Clinical utility of daptomycin in infective endocarditis caused by Gram-positive cocci. International Journal of Antimicrobial Agents. 2011;38(5):365–370. [PubMed]
5. Costa Y., Galimand M., Leclercq R., Duval J., Courvalin P. Characterization of the chromosomal aac(6ʹ)-Ii gene specific for Enterococcus faecium. Antimicrobial Agents and Chemotherapy. 1993;37(9):1896–1903.
6. Depardieu F., Courvalin P., Msadek T. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Molecular Microbiology. 2003;50(3):1069–1083.
7. Franke A. E., Clewell D. B. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of "conjugal" transfer in the absence of a conjugative plasmid. Journal of Bacteriology. 1981;145(1):494–502.
8. Abbas F.M. Ruta graveolens in vitro Anti-fungal Activity and Screening of Bioactive Chemical Compounds Using Fourier transform infrared spectroscopic. Journal of Current Medical Research and Opinion. 2023; 6(08): 1671-1676.
9. Abbas F.M. Evaluation of Antibacterial and Antifungal Activity of Bioactive Chemical Compounds Isolated from Candida albicans. Journal of Current Medical Research and Opinion. 2023; 6(08): 1677-1684.
10. Plotnikova, J. M., L. G. Rahme, and F. M. Ausubel. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol. 2000; 124:1766–1774.
11. Qin, X., K. V. Singh, G. M. Weinstock, and B. E. Murray. Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J. Bacteriol. 2001; 183:3372–3382.
12. Rahme, L, E Stevens, S. Common virulence factors for bacterial pathogenicity in plants and animals. Science. 1995; 268:1899–1902.
13. Tan, M, L. G. Rahme, J. A. Sternberg, R. G. Tompkins, and F. M. Ausubel. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc. Natl. Acad. Sci. USA 1999; 96:2408–2413.
14. Walker, T. S., H. P. Bais, E. Deziel, H. P. Schweizer, L. G. Rahme, R. Fall, and J. M. Vivanco. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 2004; 134:320– 331.
15. Y. Aqeel, R. Siddiqui, M. Ateeq, M. Raza Shah, H. Kulsoom, and N. A. Khan, “Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts,” The Journal of Eukaryotic Microbiology. 2015; 62(1): 85–94,.
16. N. K. Abass, Z. J. Shanan, T. H. Mohammed, and L. K. Abbas, “Fabricated of Cu doped ZnO nanoparticles for solar cell application,” Baghdad Science Journal. 2018; 15(2).
17. S. F. A. Albaayit, R. Maharjan, and M. Khan, “Evaluation of hemolysis activity of Zerumbone on RBCs and brine shrimp toxicity,” Baghdad Science Journal. 2021; 18(1): 65–69.
18. Deorukhkar S. Virulence Traits Contributing to Pathogenicity of Candida Species. J. Microbiol. Exp. 2017;5.

Authors

Sabreen Abd Elameer Kamal
imadbiotechnology@gmail.com (Primary Contact)
Imad Hadi Hameed
Ghadeer Ali Abdulhussein
Kamal, S. A. E. ., Hameed , I. H. ., & Abdulhussein, G. A. . (2023). Secondary Metabolite Products from Enterococcus faecalis Using GC/MS and In vitro Evaluation of Its Antimicrobial Activity of Some Medicinal Plant Extracts. Journal of Current Medical Research and Opinion, 6(08), 1685–1693. https://doi.org/10.52845/CMRO/2023/6-8-7
Copyright and license info is not available

Article Details