Nanotechnology: An Opportunity to Combat COVID-19 The Global Burden of Sepsis: A Health Economic Analysis

Pratik Kumar Mitra (1) , Sujoy Ranjan Deb (2) , Suchanda Gadre (3) , Prolay Paul (4) , Sobhan Gupta (5) , Abhijit Sarkar (6) , Asif Alam Mondal (7)
(1) MBBS,MD,FNBE (Critical Care Medicine Consultant)- Narayana Superspeciality Hospital, Howrah 711103 , Iran, Islamic Republic of
(2) CEO, Narayan Memorial Hospital, Behala, Kolkata- 700034 , India
(3) Medical Superintendent- Narayana Superspeciality Hospital, Howrah 711103 , India
(4) Clinical Pharmacologist- Narayana Superspeciality Hospital, Howrah 711103. Orcid id 0000-0001-7042-3314 , India
(5) Clinical Pharmacology- Intern, Narayana Superspeciality Hospital, Howrah 711103 , India
(6) Pre-Intern, Poona College Of Pharmacy (BVDU), Pune, Maharastra- 411038 , India
(7) Pharmacy Student- MAKAUT, Sector 1, Bidhannagar, Kolkata- 700064 , India

Abstract

Sepsis is a life threatening medical condition that formally called blood poisoning is usually triggered by a local infection such as pneumonia in lungs or infected wounds or infection of urinary tract should be bacterial(e.g. Staphylococcus aureus,  Escherichia coli, Haemophilus influenza, etc.). Begin treatment and resuscitation  immediately. Give at least 30 mL/kg of IV crystalloid fluid within the first 3 h in the resuscitation from sepsis-induced hypoperfusion (strong recommendation, low quality of evidence). Frequent reassessment of hemodynamic status following initial fluid resuscitation to guide additional fluids. Administer IV antimicrobials as soon as possible after recognition and within 1 h for both sepsis and septic shock. Apply  fluid challenge technique where fluid administration is continued as long as hemodynamic factors continue to improve (BPS). Need based, response assessed fluid resuscitation with lookout for A/E (eg: pulmonary edema). Use crystalloids as the fluid of choice for initial resuscitation and subsequent intravascular volume replacement in patients with sepsis and septic shock. Sepsis is associated with newly acquired cognitive impairment and functional disability amongst survivors.

Full text article

Generated from XML file

References

1. Chakhalian D, Shultz RB, Miles CE, Kohn J. Opportunities for biomaterials to address the challenges of COVID‐19. Journal of Biomedical Materials Research Part A. 2020;108[10]:1974-90.
2. Medhi R, Srinoi P, Ngo N, Tran H-V, Lee TR. Nanoparticle-based strategies to combat COVID-19. ACS Applied Nano Materials. 2020;3[9]:8557-80.
3. Salzberger B, Buder F, Lampl B, Ehrenstein B, Hitzenbichler F, Holzmann T, et al. Epidemiology of SARS-CoV-2. Infection. 2021;49[2]:233-9.
4. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Annals of internal medicine. 2020;173[5]:362-7.
5. Kadkhoda K. Herd Immunity to COVID-19: Alluring and Elusive. Oxford University Press US; 2021.
6. Fine P, Eames K, Heymann DL. “Herd immunity”: a rough guide. Clinical infectious diseases. 2011;52[7]:911-6.
7. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta [BBA]-Molecular Basis of Disease. 2020;1866[10]:165878.
8. Wang M-Y, Zhao R, Gao L-J, Gao X-F, Wang D-P, Cao J-M. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Frontiers in cellular and infection microbiology. 2020;10.
9. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581[7807]:221-4.
10. Rome BN, Avorn J. Drug evaluation during the Covid-19 pandemic. New England Journal of Medicine. 2020;382[24]:2282-4.
11. Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, et al. COVID-19: drug targets and potential treatments. Journal of medicinal chemistry. 2020;63[21]:12359-86.
12. Sinha N, Balayla G. Hydroxychloroquine and covid-19. Postgraduate medical journal. 2020;96[1139]:550-5.
13. Graef ER, Liew JW, Putman MS, Simard JF, Sirotich E, Berenbaum F, et al. Festina lente: hydroxychloroquine, COVID-19 and the role of the rheumatologist. Annals of the rheumatic diseases. 2020;79[6]:734-6.
14. Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Journal of Zhejiang University [Medical Science]. 2020;49[2]:215-9.
15. Cohen MS. Hydroxychloroquine for the prevention of Covid-19—searching for evidence. Mass Medical Soc; 2020.
16. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19. New England Journal of Medicine. 2020;383[19]:1813-26.
17. Ferner RE, Aronson JK. Remdesivir in covid-19. British Medical Journal Publishing Group; 2020.
18. Joshi S, Parkar J, Ansari A, Vora A, Talwar D, Tiwaskar M, et al. Role of favipiravir in the treatment of COVID-19. International Journal of Infectious Diseases. 2021;102:501-8.
19. Lou Y, Liu L, Yao H, Hu X, Su J, Xu K, et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. European Journal of Pharmaceutical Sciences. 2021;157:105631.
20. Seneviratne SL, Abeysuriya V, De Mel S, De Zoysa I, Niloofa R. Favipiravir in COVID-19. International Journal of Progressive Sciences and Technologies. 2020;19[2]:143-5.
21. Mahase E. Covid-19: Molnupiravir reduces risk of hospital admission or death by 50% in patients at risk, MSD reports. British Medical Journal Publishing Group; 2021.
22. Benkovics T, McIntosh J, Silverman S, Kong J, Maligres P, Itoh T, et al. Evolving to an ideal synthesis of molnupiravir, an investigational treatment for COVID-19. 2020.
23. Burke A, Birmingham W, Zhuo Y, da Costa BZ, Crawshaw R, Thorpe T, et al. A biocatalytic approach to a key intermediate for the synthesis of the COVID-19 experimental drug Molnupiravir. 2021.
24. Cadegiani FA, Goren A, Wambier CG, McCoy J. Early COVID-19 therapy with azithromycin plus nitazoxanide, ivermectin or hydroxychloroquine in outpatient settings significantly improved COVID-19 outcomes compared to known outcomes in untreated patients. New microbes and new infections. 2021;43:100915.
25. Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal transduction and targeted therapy. 2020;5[1]:1-10.
26. Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS nano. 2020;14[7]:7760-82.
27. Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS nano. 2020;14[6]:6383-406.
28. Palestino G, GarcĂ­a-Silva I, GonzĂĄlez-Ortega O, Rosales-Mendoza S. Can nanotechnology help in the fight against COVID-19? Expert review of anti-infective therapy. 2020;18[9]:849-64.
29. Pradhan B, Nayak R, Patra S, Bhuyan PP, Behera PK, Mandal AK, et al. A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections. Carbohydrate Polymers. 2022:119551.
30. Ruiz‐Hitzky E, Darder M, Wicklein B, Ruiz‐Garcia C, Martín‐Sampedro R, Del Real G, et al. Nanotechnology responses to COVID‐19. Advanced healthcare materials. 2020;9[19]:2000979.
31. Long C, Xu H, Shen Q, Zhang X, Fan B, Wang C, et al. Diagnosis of the Coronavirus disease [COVID-19]: rRT-PCR or CT? European journal of radiology. 2020;126:108961.
32. Hafeez A, Ahmad S, Siddqui SA, Ahmad M, Mishra S. A review of COVID-19 [Coronavirus Disease-2019] diagnosis, treatments and prevention. EJMO. 2020;4[2]:116-25.
33. Jamil S, Mark N, Carlos G, Cruz CSD, Gross JE, Pasnick S. Diagnosis and management of COVID-19 disease. American journal of respiratory and critical care medicine. 2020;201[10]:P19-P20.
34. Tang Y-W, Schmitz JE, Persing DH, Stratton CW. Laboratory diagnosis of COVID-19: current issues and challenges. Journal of clinical microbiology. 2020;58[6]:e00512-20.
35. Jindal S, Gopinath P. Nanotechnology based approaches for combatting COVID-19 viral infection. Nano Express. 2020.
36. Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS nano. 2020;14[6]:7617-27.
37. Yang Y, Peng Y, Lin C, Long L, Hu J, He J, et al. Human ACE2-Functionalized Gold “Virus-Trap” Nanostructures for Accurate Capture of SARS-CoV-2 and Single-Virus SERS Detection. Nano-micro letters. 2021;13[1]:1-13.
38. Zhao H, Zhang Y, Chen Y, Ho NR, Sundah NR, Natalia A, et al. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosensors and Bioelectronics. 2021;194:113629.
39. Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS nano. 2020;14[5]:5268-77.
40. Manivannan S, Ponnuchamy K. Quantum dots as a promising agent to combat COVID‐19. Applied organometallic chemistry. 2020;34[10]:e5887.
41. Sharma S, Saini S, Khangembam M, Singh V. Nanomaterials Based Biosensors for COVID-19 Detection-A Review. IEEE Sensors Journal. 2020.
42. Zhang Y, Malekjahani A, Udugama BN, Kadhiresan P, Chen H, Osborne M, et al. Surveilling and Tracking COVID-19 Patients Using a Portable Quantum Dot Smartphone Device. Nano letters. 2021.
43. Liu D, Ju C, Han C, Shi R, Chen X, Duan D, et al. Ultra-sensitive nanozyme-based chemiluminescence paper test for rapid diagnosis of SARS-CoV-2 infection. bioRxiv. 2020.
44. BĂŒyĂŒksĂŒnetçi YT, Çitil BE, Tapan U, Anık Ü. Development and application of a SARS-CoV-2 colorimetric biosensor based on the peroxidase-mimic activity of Îł-Fe2O3 nanoparticles. Microchimica Acta. 2021;188[10]:1-9.
45. Shen Q, Liang H, Tian J, Zhou C, Gao A, Wang D, et al. A magnetic nanoparticle labeled immunochromatography kit for sars-cov-2 infection diagnosis. Nano Biomed Eng. 2020;12[4]:325-30.
46. Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus [SARS-CoV-2] in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano. 2020;14[4]:5135-42.
47. Xiao C, de Simón BM, Gil PR. Stabile SERS Encoded Silver Silica Nanocomposites for Industrial Labeling–the Case of COVID-19 Diagnosis. 2021.
48. Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi SA. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins. Biosensors and Bioelectronics. 2021;177:112971.
49. Wu Y, Dang H, Park S-G, Chen L, Choo J. SERS-PCR assays of SARS-CoV-2 target genes using Au nanoparticles-internalized Au nanodimple substrates. Biosensors and Bioelectronics. 2022;197:113736.
50. El-Said WA, Al-Bogami AS, Alshitari W. Synthesis of gold nanoparticles@ reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022;264:120237.
51. Vazquez-Munoz R, Lopez-Ribot JL. Nanotechnology as an alternative to reduce the spread of COVID-19. Challenges. 2020;11[2]:15.
52. Paliwal P, Sargolzaei S, Bhardwaj SK, Bhardwaj V, Dixit C, Kaushik A. Grand challenges in bio-nanotechnology to manage the COVID-19 pandemic. Frontiers in Nanotechnology. 2020;2:5.
53. Ignatov I, editor Antiviral effects of nano colloidal silver, water catholyte, oxidal with methylene blue. possible effects of influence over coronavirus SARS-CoV and SARS-CoV-2 with Disease COVID-19. Global Congress on Infectious Diseases, SciTech Infectious Diseases; 2020.
54. Balagna C, Perero S, Percivalle E, Nepita EV, Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics. 2020;1:100006.
55. Ahmadpoor P, Rostaing L. Why the immune system fails to mount an adaptive immune response to a Covid‐19 infection. Transplant International. 2020;33[7]:824-5.
56. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell. 2021.
57. Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, et al. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials. 2020;10[4]:802.
58. Hutasoit N, Kennedy B, Hamilton S, Luttick A, Rashid RAR, Palanisamy S. Sars-CoV-2 [COVID-19] inactivation capability of copper-coated touch surface fabricated by cold-spray technology. Manufacturing Letters. 2020;25:93-7.
59. El-Megharbel SM, Alsawat M, Al-Salmi FA, Hamza RZ. Utilizing of [zinc oxide nano-spray] for disinfection against “SARS-CoV-2” and testing its biological effectiveness on some biochemical parameters during [COVID-19 pandemic]—” ZnO nanoparticles have antiviral activity against [SARS-CoV-2]”. Coatings. 2021;11[4]:388.
60. Rattis BA, Ramos SG, Celes M. Curcumin as a Potential Treatment for COVID-19. Frontiers in Pharmacology. 2021;12:1068.
61. Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, et al. The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials. 2020;10[8]:1566.
62. Özmen EN, Kartal E, Turan MB, Yazıcıoğlu A, Niazi JH, Qureshi A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 [COVID-19] and other respiratory viral infections: a review. Materials Science and Engineering: C. 2021:112356.
63. Gupta I, Azizighannad S, Farinas ET, Mitra S. Antiviral properties of select carbon nanostructures and their functionalized analogs. Materials Today Communications. 2021;29:102743.
64. Rhazouani A, Aziz K, Gamrani H, Gebrati L, Uddin MS, Faissal A. Can the application of graphene oxide contribute to the fight against COVID-19? Antiviral activity, diagnosis and prevention. Current Research in Pharmacology and Drug Discovery. 2021:100062.
65. Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K, et al. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics. 2019;9[23]:6920.
66. Lin Z, Li Y, Gong G, Xia Y, Wang C, Chen Y, et al. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. International journal of nanomedicine. 2018;13:5787.
67. Liu Q, Zhao X, Ma J, Mu Y, Wang Y, Yang S, et al. Selenium [Se] plays a key role in the biological effects of some viruses: Implications for COVID-19. Environmental research. 2021;196:110984.
68. Zhang J, Saad R, Taylor EW, Rayman MP. Selenium and selenoproteins in viral infection with potential relevance to COVID-19. Redox biology. 2020:101715.
69. He L, Zhao J, Wang L, Liu Q, Fan Y, Li B, et al. Using nano-selenium to combat Coronavirus Disease 2019 [COVID-19]? Nano Today. 2021;36:101037.
70. Mondéjar-López M, López-Jimenez AJ, Martínez JCG, Ahrazem O, Gómez-Gómez L, Niza E. Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. International Journal of Biological Macromolecules. 2022;206:288-97.
71. Hathout RM, Kassem DH. Positively charged electroceutical spun chitosan nanofibers can protect health care providers from COVID-19 infection: an opinion. Frontiers in Bioengineering and Biotechnology. 2020;8.
72. Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Hoseini MHM. Chitin and chitosan as tools to combat COVID-19: A triple approach. International journal of biological macromolecules. 2021.
73. Gulati N, Dua K, Dureja H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. International journal of biological macromolecules. 2021.
74. Peng H, Qiao L, Shan G, Gao M, Zhang R, Yi X, et al. Stepwise responsive carboxymethyl chitosan-based nanoplatform for effective drug-resistant breast cancer suppression. Carbohydrate Polymers. 2022:119554.
75. Song J, Zhang C, Kong S, Liu F, Hu W, Su F, et al. Novel chitosan based metal-organic polyhedrons/enzyme hybrid hydrogel with antibacterial activity to promote wound healing. Carbohydrate Polymers. 2022:119522.
76. Lin W, Zhang J, Xu J-F, Pi J. The advancing of selenium nanoparticles against infectious diseases. Frontiers in Pharmacology. 2021:1971.
77. Babu A, Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Marine drugs. 2017;15[4]:96.
78. Fouda MM, El-Aassar M, Al-Deyab SS. Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydrate polymers. 2013;92[2]:1012-7.
79. Wang Y-L, Zhou Y-N, Li X-Y, Huang J, Wahid F, Zhong C, et al. Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. International journal of biological macromolecules. 2020;156:252-61.
80. Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomaterials Science. 2021;9[10]:3543-75.
81. Nguyen VQ, Ishihara M, Kinoda J, Hattori H, Nakamura S, Ono T, et al. Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. Journal of nanobiotechnology. 2014;12[1]:1-9.
82. Li Y, Lin Z, Gong G, Guo M, Xu T, Wang C, et al. Inhibition of H1N1 influenza virus-induced apoptosis by selenium nanoparticles functionalized with arbidol through ROS-mediated signaling pathways. Journal of Materials Chemistry B. 2019;7[27]:4252-62.
83. Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, et al. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. International journal of nanomedicine. 2020;15:2699.
84. Mori Y, Ono T, Miyahira Y, Nguyen VQ, Matsui T, Ishihara M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale research letters. 2013;8[1]:1-6.
85. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. Journal of biomedical science. 2019;26[1]:1-10.
86. Lee EC, Nguyen CT, Strounina E, Davis-Poynter N, Ross BP. Structure–activity relationships of GAG mimetic-functionalized mesoporous silica nanoparticles and evaluation of acyclovir-loaded antiviral nanoparticles with dual mechanisms of action. ACS omega. 2018;3[2]:1689-99.
87. Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, et al. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. International journal of nanomedicine. 2017;12:5733.
88. Ciejka J, Wolski K, Nowakowska M, Pyrc K, SzczubiaƂka K. Biopolymeric nano/microspheres for selective and reversible adsorption of coronaviruses. Materials Science and Engineering: C. 2017;76:735-42.
89. Das Jana I, Kumbhakar P, Banerjee S, Gowda CC, Kedia N, Kuila SK, et al. Copper Nanoparticle–Graphene Composite-Based Transparent Surface Coating with Antiviral Activity against Influenza Virus. ACS Applied Nano Materials. 2020;4[1]:352-62.
90. Rosales-Mendoza S, GonzĂĄlez-Ortega O. Nanovaccines: Springer; 2019.
91. Singh B. Biomimetic nanovaccines for COVID-19. Applied Science and Technology Annals. 2020;1[1]:176-82.
92. Kyriakidis NC, López-Cortés A, Gonzålez EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines. 2021;6[1]:1-17.
93. Theobald N. Emerging vaccine delivery systems for COVID-19: Functionalised silica nanoparticles offer a potentially safe and effective alternative delivery system for DNA/RNA vaccines and may be useful in the hunt for a COVID-19 vaccine. Drug Discovery Today. 2020;25[9]:1556.
94. Talebian S, Conde J. Why go NANO on COVID-19 pandemic? Matter. 2020;3[3]:598-601.
95. Lima KM, dos Santos SA, Rodrigues Jr JM, Silva CL. Vaccine adjuvant: it makes the difference. Vaccine. 2004;22[19]:2374-9.
96. Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO molecular medicine. 2014;6[6]:708-20.
97. Bovier PA. EpaxalÂź: a virosomal vaccine to prevent hepatitis A infection. Expert review of vaccines. 2008;7[8]:1141-50.
98. Herzog C, Hartmann K, KĂŒnzi V, KĂŒrsteiner O, Mischler R, Lazar H, et al. Eleven years of InflexalÂź V—a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27[33]:4381-7.
99. Lisziewicz J, Trocio J, Whitman L, Varga G, Xu J, Bakare N, et al. DermaVir: a novel topical vaccine for HIV/AIDS. Journal of investigative dermatology. 2005;124[1]:160-9.
100. Lori F, Trocio J, Bakare N, Kelly LM, Lisziewicz J. DermaVir, a novel HIV immunisation technology. Vaccine. 2005;23[17-18]:2030-4.
101. Monie A, Hung C-F, Roden R, Wu TC. Cervarixℱ: a vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics: targets & therapy. 2008;2[1]:107.
102. Prasanna P, Kumar P, Kumar S, Rajana VK, Kant V, Prasad SR, et al. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis–A review. Biomedicine & Pharmacotherapy. 2021;141:111920.
103. Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunology and cell biology. 2005;83[2]:97-105.
104. Sullivan SM, Doukas J, Hartikka J, Smith L, Rolland A. Vaxfectin: a versatile adjuvant for plasmid DNA-and protein-based vaccines. Expert opinion on drug delivery. 2010;7[12]:1433-46.
105. Saxena S, Skirrow H, Bedford H. Routine vaccination during covid-19 pandemic response. British Medical Journal Publishing Group; 2020.
106. Callaway E, Mallapaty S. NOVAVAX COVID VACCINE PROTECTS PEOPLE AGAINST VARIANTS. Nature. 2021;590:17.
107. Tian J-H, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature communications. 2021;12[1]:1-14.
108. Raghuwanshi D, Mishra V, Das D, Kaur K, Suresh MR. Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein. Molecular pharmaceutics. 2012;9[4]:946-56.
109. Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. British Medical Journal Publishing Group; 2021.

Authors

Pratik Kumar Mitra
Sujoy Ranjan Deb
Suchanda Gadre
Prolay Paul
Sobhan Gupta
Abhijit Sarkar
Asif Alam Mondal
Mitra, P. K., Deb, S. R. ., Gadre, S. ., Paul, P. ., Gupta, S., Sarkar, A. ., & Mondal, A. A. . (2022). Nanotechnology: An Opportunity to Combat COVID-19: The Global Burden of Sepsis: A Health Economic Analysis. Journal of Current Medical Research and Opinion, 5(11), 1462–1475. https://doi.org/10.52845/CMRO/2022/5-11-1
Copyright and license info is not available

Article Details