OZ101, an oligofructose prebiotic, may prolong sulphonylurea efficcy in patients with type 2 diabetes: a pilot study OZ101 and sulphonylurea-mediated glycaemic control

Nick N Gorgani (1) , Karl H. S. Kim (2) , Wendy L. Free (3) , Mahnoosh Afkham (4) , Jeremy D. Henson (5) , Paramesh Shamanna (6) , Shahnam Ajdari (7) , C. Ronald Kahn (8) , Timothy R. Hirst (9) , Anthony H. Barnett (10) , Sanjoy K. Paul (11)
(1) a:1:{s:5:"en_US";s:27:"OzStar Therapeutics Pty Ltd";} , Australia
(2) , United States
(3) , Australia
(4) , Australia
(5) , Australia
(6) , India
(7) , Australia
(8) , United States
(9) , Australia
(10) , United Kingdom
(11) , Australia

Abstract

Aims: The sulphonylurea class of anti-diabetes drugs lose efficacy over time due to progressive beta-cell failure. Their long-term use may exacerbate gut microbial dysbiosis as they are derivatives of sulphonamide antibiotics. We conducted a pilot study to test the hypothesis that OZ101, administered as adjunctive prebiotic therapy, improves beta-cell function and glycaemic control in sulphonylurea-treated patients.


Materials and Methods: Subjects with type 2 diabetes on sulphonylurea monotherapy (n=30) were randomized in a 24-week parallel dose range-finding study to either continue receiving their usual sulphonylurea-only treatment or add a thrice-daily regimen of 13.5 or 27 g/d doses of OZ101. HOMA-B, glycaemic parameters after 12 hours fasting, and glucose area under the curve (AUC; over 240 minutes) after intake of a pre-defined calorie milkshake were collected at baseline and 24 weeks.


Results: Over 24-weeks, control subjects on sulphonylurea-only showed a decline in beta-cell function (35.54% decrease in HOMA-B from baseline, p = 0.01), whereas subjects taking sulphonylurea+13.5 g/d OZ101 improved (22.9% increase in HOMA-B from baseline, p = 0.031). There was a 0.95% (10mmol/mol) difference in HbA1c (p = 0.047) and 607 mmol/l*240min AUC (p = 0.039) in favour of the sulphonylurea +13.5g/d OZ101 compared with control group. HbA1c and AUC were not altered in subjects treated with sulphonylurea+27 g/d OZ101 compared with the control group. Microbiome profiling suggested reciprocal relationships in beneficial versus detrimental bacteria between control and treatment groups.


Conclusions: Adjunctive intake of 13.5g/d OZ101 in patients on sulphonylurea therapy was safe, well-tolerated and associated with improved beta-cell function and stabilization of glycaemic control over 24 weeks. Absence of similar response for the 27 g/d OZ101 group may relate to changes in gut microbiome profiles. Future studies will determine the mechanistic link between OZ101 therapy, changes in gut microbiome, and metabolic responses.

Full text article

Generated from XML file

References

[1] “ Standards of Medical Care in Diabetes—2021 Abridged for Primary Care Providers ,” Clin. Diabetes, vol. 39, no. 1, pp. 14–43, 2021, doi: 10.2337/cd21-as01.
[2] K. A. Page and T. Reisman, “Interventions to preserve beta-cell function in the management and prevention of type 2 diabetes,” Curr. Diab. Rep., vol. 13, no. 2, pp. 252–260, Apr. 2013, doi: 10.1007/s11892-013-0363-2.
[3] R. Jain, U. Kabadi, and M. Kabadi, “Is β-cell failure in type 2 diabetes mellitus reversible?,” Int. J. Diabetes Dev. Ctries., vol. 28, no. 1, pp. 1–5, 2008, doi: 10.4103/0973-3930.41978.
[4] C. Wysham and J. Shubrook, “Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications,” Postgrad. Med., vol. 132, no. 8, pp. 676–686, 2020, doi: 10.1080/00325481.2020.1771047.
[5] D. R. Matthews, C. A. Cull, I. M. Stratton, R. R. Holman, and R. C. Turner, “UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years,” Diabet. Med., vol. 15, no. 4, pp. 297–303, 1998, doi: 10.1002/(SICI)1096-9136(199804)15:4<297::AID-DIA572>3.0.CO;2-W.
[6] S. E. Kahn et al., “Glycemic Durability of Rosiglitazone, Metformin, or Glyburide Monotherapy,” N. Engl. J. Med., vol. 355, no. 23, pp. 2427–2443, Dec. 2006, doi: 10.1056/nejmoa066224.
[7] A. Rosengren, X. Jing, L. Eliasson, and E. Renström, “Why treatment fails in type 2 diabetes,” PLoS Medicine, vol. 5, no. 10. Public Library of Science, pp. 1426–1427, Oct. 2008. doi: 10.1371/journal.pmed.0050215.
[8] M. B. Krajačíc et al., “Synthesis, characterization and in vitro antimicrobial activity of novel sulfonylureas of 15-membered azalides,” J. Antibiot. (Tokyo)., vol. 58, no. 6, pp. 380–389, 2005, doi: 10.1038/JA.2005.48.
[9] L. Pan et al., “Synthesis and evaluation of novel monosubstituted sulfonylurea derivatives as antituberculosis agents,” Eur. J. Med. Chem., vol. 50, 2012, doi: 10.1016/j.ejmech.2012.01.011.
[10] F. Zani and P. Vicini, “Antimicrobial activity of some 1,2-benzisothiazoles having a benzenesulfonamide moiety,” Arch. Pharm. (Weinheim)., vol. 331, no. 6, 1998, doi: 10.1002/(SICI)1521-4184(199806)331:6<219::AID-ARDP219>3.0.CO;2-U.
[11] C. León et al., “Synthesis and evaluation of sulfonylurea derivatives as novel antimalarials,” Eur. J. Med. Chem., vol. 42, no. 6, pp. 735–742, Jun. 2007, doi: 10.1016/J.EJMECH.2007.01.001.
[12] M. Rastelli, P. D. Cani, and C. Knauf, “The Gut Microbiome Influences Host Endocrine Functions,” Endocr. Rev., vol. 40, no. 5, pp. 1271–1284, 2019, doi: 10.1210/er.2018-00280.
[13] Y. Fan and O. Pedersen, “Gut microbiota in human metabolic health and disease,” Nat. Rev. Microbiol., vol. 19, no. 1, pp. 55–71, 2021, doi: 10.1038/s41579-020-0433-9.
[14] S. Sharma and P. Tripathi, “Gut microbiome and type 2 diabetes: where we are and where to go?,” Journal of Nutritional Biochemistry, vol. 63. Elsevier Inc., pp. 101–108, Jan. 01, 2019. doi: 10.1016/j.jnutbio.2018.10.003.
[15] M. Gurung et al., “Role of gut microbiota in type 2 diabetes pathophysiology,” EBioMedicine, vol. 51. 2020. doi: 10.1016/j.ebiom.2019.11.051.
[16] J. L. Knopp, L. Holder-Pearson, and J. G. Chase, “Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths,” Journal of Diabetes Science and Technology, vol. 13, no. 3. SAGE Publications Inc., pp. 597–600, May 01, 2019. doi: 10.1177/1932296818805074.
[17] T. M. Wallace, J. C. Levy, and D. R. Matthews, “Use and abuse of HOMA modeling,” Diabetes Care, vol. 27, no. 6. pp. 1487–1495, Jun. 2004. doi: 10.2337/diacare.27.6.1487.
[18] A. W. Chan et al., “SPIRIT 2013 statement: Defining standard protocol items for clinical trials,” Annals of Internal Medicine, vol. 158, no. 3. American College of Physicians, pp. 200–207, Feb. 05, 2013. doi: 10.7326/0003-4819-158-3-201302050-00583.
[19] H. E. Lebovitz and Y. Bonhomme, “Historical Development of Oral Antidiabetic Agents: The Era of Fortuitous Discovery,” in Frontiers in Diabetes, vol. 29, S. Karger AG, 2020, pp. 115–133. doi: 10.1159/000506558.
[20] F. G. Young, “Hypoglycaemic and Antidiabetic Sulphonamides,” Br. Med. J., vol. 2, no. 4990, p. 431, Aug. 1956, doi: 10.1136/bmj.2.4990.431.
[21] R. Levine, “Sulfonylureas: Background and development of the field,” Diabetes Care, vol. 7, no. SUPPL. 1, pp. 3–7, 1984, Accessed: Apr. 13, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/6376027/
[22] R. A. DeFronzo, R. Eldor, and M. A. Bdul-Ghani, “Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes,” Diabetes Care, vol. 36, no. SUPPL.2, 2013, doi: 10.2337/dcS13-2011.
[23] H. Al-Salami, G. Butt, J. P. Fawcett, I. G. Tucker, S. Golocorbin-Kon, and M. Mikov, “Probiotic treatment reduces blood glucose leveis and increases systemic absorption of gliclazide in diabetic rats,” Eur. J. Drug Metab. Pharmacokinet., vol. 33, no. 2, 2008, doi: 10.1007/BF03191026.
[24] E. J. M. van Bommel, H. Herrema, M. Davids, M. H. H. Kramer, M. Nieuwdorp, and D. H. van Raalte, “Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: Results of a double-blind randomized trial in patients with type 2 diabetes,” Diabetes Metab., vol. 46, no. 2, 2020, doi: 10.1016/j.diabet.2019.11.005.
[25] G. GR and R. MB, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” J. Nutr., vol. 125, no. 6, pp. 1401–1412, 1995, doi: 10.1093/JN/125.6.1401.
[26] K. G, “Inulin-type prebiotics--a review: part 1,” Altern. Med. Rev., vol. 13, no. 4, pp. 315–329, Dec. 2008, Accessed: Sep. 15, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/19152479/
[27] K. G, “Inulin-type prebiotics: a review. (Part 2),” Altern. Med. Rev., vol. 14, no. 1, pp. 36–55, Mar. 2009, Accessed: Sep. 15, 2021. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/19364192/
[28] E. Franco-Robles and M. G. López, “Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms,” Sci. World J., vol. 2015, 2015, doi: 10.1155/2015/289267.
[29] I. V. Perrin, M. Marchesini, F. C. Rochat, E. J. Schiffrin, and B. Schilter, “Oligofructose does not affect the development of Type 1 diabetes mellitus induced by dietary proteins in the diabetes-prone BB rat model,” Diabetes, Nutr. Metab. - Clin. Exp., vol. 16, no. 2, pp. 94–101, 2003.
[30] P. Rozan, A. Nejdi, S. Hidalgo, J. F. Bisson, D. Desor, and M. Messaoudi, “Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan,” Br. J. Nutr., vol. 100, no. 6, pp. 1192–1199, 2008, doi: 10.1017/S0007114508975607.
[31] J. Luo et al., “Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism,” Am. J. Clin. Nutr., vol. 63, no. 6, pp. 939–945, 1996, doi: 10.1093/ajcn/63.6.939.
[32] G. Schaafsma, W. J. A. Meuling, W. Van Dokkum, and C. Bouley, “Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers,” Eur. J. Clin. Nutr., vol. 52, no. 6, pp. 436–440, 1998, doi: 10.1038/sj.ejcn.1600583.
[33] W. Van Dokkum, B. Wezendonk, T. S. Srikumar, and E. G. H. M. Van Den Heuvel, “Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects,” Eur. J. Clin. Nutr., vol. 53, no. 1, pp. 1–7, 1999, doi: 10.1038/sj.ejcn.1600668.
[34] J. L. Causey, J. M. Feirtag, D. D. Gallaher, B. C. Tungland, and J. L. Slavin, “Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men,” Nutr. Res., vol. 20, no. 2, pp. 191–201, Feb. 2000, doi: 10.1016/S0271-5317(99)00152-9.
[35] R. Giacco et al., “Effects of short-chain fructo-oligosaccharides on glucose and lipid metabolism in mild hypercholesterolaemic individuals,” Clin. Nutr., vol. 23, no. 3, pp. 331–340, 2004, doi: 10.1016/j.clnu.2003.07.010.
[36] L. Jing, M. Van Yperselle, S. W. Rizkalla, F. Rossi, F. R. J. Bornet, and G. Slama, “Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics,” J. Nutr., vol. 130, no. 6, pp. 1572–1577, 2000, doi: 10.1093/jn/130.6.1572.
[37] M. S. Alles, N. M. De Roos, J. C. Bakx, E. Van De Lisdonk, P. L. Zock, and J. G. A. J. Hautvast, “Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes,” Am. J. Clin. Nutr., vol. 69, no. 1, pp. 64–69, 1999, doi: 10.1093/ajcn/69.1.64.
[38] D. Letexier, F. Diraison, and M. Beylot, “Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans,” Am. J. Clin. Nutr., vol. 77, no. 3, pp. 559–564, 2003, doi: 10.1093/ajcn/77.3.559.
[39] F. Forcheron and M. Beylot, “Long-term administration of inulin-type fructans has no significant lipid-lowering effect in normolipidemic humans,” Metabolism., vol. 56, no. 8, pp. 1093–1098, 2007, doi: 10.1016/j.metabol.2007.03.019.
[40] N. K. A. Bonsu, C. S. Johnson, and K. M. Mcleod, “Can dietary fructans lower serum glucose?,” J. Diabetes, vol. 3, no. 1, pp. 58–66, 2011, doi: 10.1111/j.1753-0407.2010.00099.x.
[41] B. P. Gargari, P. Dehghan, A. Aliasgharzadeh, and M. A. Jafar-Abadi, “Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes,” Diabetes Metab. J., vol. 37, no. 2, pp. 140–148, 2013, doi: 10.4093/dmj.2013.37.2.140.
[42] A. Aliasgharzadeh et al., “A combination of prebiotic inulin and oligofructose improve some of cardiovascular disease risk factors in women with type 2 diabetes: A randomized controlled clinical trial,” Adv. Pharm. Bull., vol. 5, no. 4, pp. 507–514, 2015, doi: 10.15171/apb.2015.069.
[43] P. Dehghan, B. Pourghassem Gargari, and M. Asghari Jafar-abadi, “Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: A randomized controlled clinical trial,” Nutrition, vol. 30, no. 4, pp. 418–423, 2014, doi: 10.1016/j.nut.2013.09.005.
[44] K. Yamashita, K. Kawai, and M. Itakura, “Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects,” Nutr. Res., vol. 4, no. 6, pp. 961–966, 1984, doi: 10.1016/S0271-5317(84)80075-5.
[45] C. AG, W. SL, and B. M, “The Effects of Prebiotics and Substances with Prebiotic Properties on Metabolic and Inflammatory Biomarkers in Individuals with Type 2 Diabetes Mellitus: A Systematic Review,” J. Acad. Nutr. Diet., vol. 120, no. 4, pp. 587-607.e2, Apr. 2020, doi: 10.1016/J.JAND.2018.12.013.
[46] L. Wang et al., “Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and dose–response meta-analysis of 33 randomized controlled trials,” J. Transl. Med., vol. 17, no. 1, Dec. 2019, doi: 10.1186/S12967-019-02159-0.
[47] C. Le Bourgot, E. Apper, S. Blat, and F. Respondek, “Fructo-oligosaccharides and glucose homeostasis: a systematic review and meta-analysis in animal models,” Nutr. Metab. (Lond)., vol. 15, no. 1, Jan. 2018, doi: 10.1186/S12986-018-0245-3.

Authors

Nick N Gorgani
nick_gorgani@ozstartherapeutics.com (Primary Contact)
Karl H. S. Kim
Wendy L. Free
Mahnoosh Afkham
Jeremy D. Henson
Paramesh Shamanna
Shahnam Ajdari
C. Ronald Kahn
Timothy R. Hirst
Anthony H. Barnett
Sanjoy K. Paul
Gorgani, N. N., Kim, K. H. S., Free, W. L., Afkham, M., Henson, J. D., Shamanna, P., Ajdari, S. ., Kahn, C. R. ., Hirst, T. R. ., Barnett, A. H. ., & Paul, S. K. . (2022). OZ101, an oligofructose prebiotic, may prolong sulphonylurea efficcy in patients with type 2 diabetes: a pilot study: OZ101 and sulphonylurea-mediated glycaemic control. Journal of Current Medical Research and Opinion, 5(06), 1235–1251. https://doi.org/10.52845/CMRO/2022/5-6-2
Copyright and license info is not available

Article Details