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Abstract: 

The study of fluid dynamics is crucial to understanding fluid flow in 

the human body, and cardiovascular physics places a lot of 

concentration on blood flow modelling. Nevertheless, the models that 

have been created thus far with three-dimensional analysis are 

extremely complex. This research work offers study of blood pressure, 

flow and other flow-related parameters. Modelling artery was an 

extensible circular pipe with oscillating blood flow. Understanding 

factors that could lead to high blood pressure as one of the reasons for 

studying blood flow. The cardiovascular system equation is a 

straightforward differential equation that was developed under certain 

assumptions using Navier-Stokes equations. Generic study of normal 

blood flow was then created by applying some assumptions to the 

equation for the cardiovascular system. Poisuelli's equation was then 

used to extend this model to account for normal blood pressure. Upon 

completion of this study, an analysis was conducted to ascertain the 

validity of the suggested problem. According to the analysis, the model 

is able to account for various blood pressure and other flow 

characteristics of blood. 

Keywords: Mathematical modeling, Equations describing 
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Introduction: 

A mathematical model elucidates the dynamics of a system within the physical domain through mathematical 

formulations. This process, termed mathematical modeling or modeling, entails the formulation of equations 

and relationships that represent the dynamics of the system under scrutiny. The cardiovascular system 

functions as the conduit for blood distribution throughout the organism. Comprising blood, heart, and blood 
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vessels, the circulation of blood is orchestrated to sustain bodily functions. As blood traverses’ vessels, it 

imparts force against vessel walls, resulting in blood pressure. The magnitude of blood pressure hinges 

primarily upon factors such as flow rate, vessel dimensions, and pressure differentials. Notably, the 

cardiovascular system encompasses three principles kind of blood vessels, capillaries, arteries, and veins. 

Arteries, which serve as conduits for blood egress from the heart, distribute blood to all body regions [16,15]. 

Arterioles, which branch from arteries, further subdivide into diminutive vessels known as capillaries, which 

act as conduits connecting the venous and arterial circulatory systems. Veins, which constitute a low-pressure 

network, facilitate the return of oxygen-depleted blood to the heart. All vessels are assumed to possess uniform 

properties, excluding variations in cross-sectional area size and length. Numerous scholarly works have delved 

into the intricacies of the cardiovascular system. A substantial body of literature explores functional imaging 

techniques and methodologies pertinent to heart function. Additional investigations have scrutinized aspects 

such as electrical activity, mechanical deformation, flow dynamics, fiber orientation, and cardiac modeling. 

This study contributes to the body of knowledge by presenting a study of blood flow and offering simulation 

outcomes based on said model [13,23]. To formulate a flow and pressure model, several assumptions have 

been postulated. Despite the role of the lungs in oxygenation, blood properties are assumed to be unaffected 

by oxygenation [2,4,8]. Moreover, it is posited that blood exhibits axial and radial flow solely in the z-direction 

within a three-dimensional framework, effectively eliminating the x- and y-directional components. Numerous 

studies have investigated various aspects of cardiovascular function, including functional imaging of the heart 

and modeling of its mechanical and electrical activity. This paper contributes by introducing a mathematical 

model of blood flow and analyzing simulation outcomes derived from this model [17,21,24]. Assumptions are 

established regarding the characteristics of blood vessels, blood properties, and flow dynamics to enable the 

construction of the model. 

Understanding the dynamics of blood flow within this system is crucial for comprehending cardiovascular 

health and disease. Mathematical modeling is a powerful tool for investigating the intricacies of blood flow 

dynamics. By representing the cardiovascular system using mathematical language, researchers can gain 

insights into its behavior under various conditions and interventions. This paper aims to elucidate the process 

of mathematical modeling applied to the cardiovascular system, focusing on blood flow dynamics and pressure 

regulation. Components of the Cardiovascular System: The cardiovascular system comprises three main 

components: blood, heart, and blood vessels. Blood, a fluid medium containing cells and plasma, serves as a 

carrier of oxygen, nutrients, and waste products [3,5]. The heart, a muscular organ, acts as a pump to propel 

blood through vessels. Blood vessels, including capillaries, veins and arteries, form the conduit through which 

blood travels to different parts of the body and heart. Arteries serve as sizable, flexible conduits responsible 

for transporting oxygen-enriched blood from the heart to diverse tissues and organs. 

Arterioles, smaller branches of arteries, further divide into capillaries, which facilitate the exchange of gases, 

nutrients, and waste products with surrounding tissues [10,12,18]. Veins, on the other hand, collect oxygen-

poor blood from tissues and return it to the heart for reoxygenation. It is influenced by several factors, 

including the rate of blood flow, the diameter of blood vessels, and the pressure gradient along the vascular 

network. Variations in blood pressure can have significant implications for overall cardiovascular health, with 

high blood pressure (hypertension) being a major risk factor for cardiovascular disease [7,22]. To formulate a 

mathematical representation of blood flow dynamics, certain assumptions are made regarding the properties 

of blood vessels and blood flow. Arteries are considered cylindrical, deformable structures having circular 

cross-sections that are capable of changing in size in response to changes in blood flow. Blood is treated as a 

Newtonian fluid and is represented by the Navier-Stokes equation, which describes the motion and 

conservation of blood mass [15,16]. Mathematical modeling is a powerful tool used to describe real-world 

systems via mathematical language. In the context of the cardiovascular system, which serves as the body's 

blood distribution network, the system comprises three main components: blood, heart, and blood vessels. 



Akbar and Shah Mathematical Modeling of Blood Flow Dynamics in the Cardiovascular System: Assumptions, Considerations, 

and Simulation Results 

Current Medical Research and Opinion, Vol. 07, Issue. 04, Page no: 2216-2225 

DOI: https://doi.org/10.52845/CMRO/2024/7-4-2             Page | 2218 

Blood pressure, detected on vessel walls as blood flows through them, is influenced primarily by factors such 

as flow rate, vessel size, and pressure gradient [19,20,12]. There is a wealth of research in this domain, 

encompassing studies on functional heart imaging, electrical activity measurement, flow dynamics, and heart 

modeling. This paper contributes by presenting a mathematical blood flow model, alongside simulation 

outcomes derived from this model. The development of a blood flow and pressure model is grounded in several 

key assumptions. These assumptions encompass blood vessels as deformable cylinders having circular cross-

sections that change in size in response to flow of blood [7,9,20]. Additionally, blood is modeled as a 

Newtonian fluid by the Navier-Stokes equation and continuity equation. Despite its dependence on oxygen 

supplied by the lungs, blood properties remain unaffected. Additionally, flow is assumed to exhibit both radial 

and axial motion in a single direction. In a three-dimensional framework, blood flow is predominantly oriented 

along the z-direction, while the effects of the remaining directional components are considered negligible. 

Mathematical Modelling and Formulation:  

Mathematical modeling plays a crucial role in understanding complex systems in the real world. This paper 

explores mathematical modelling of blood flow dynamics within the cardiovascular system. The 

cardiovascular system serves as the body's blood distribution network and comprise three main components: 

blood, heart, and blood vessels. Blood pressure, a key parameter in cardiovascular health, depends on factors 

such as flow rate, vessel size, and pressure gradient [17,20]. The system includes arteries, capillaries, and 

veins, each of which play a distinct role in blood circulation. The 𝑢, 𝑣 and 𝑤 are velocity components, in the 

𝑥, 𝑦, and 𝑧 directions respectively, where ρ represents density, P represents pressure and μ signifies kinematic 

viscosity of the blood. The Navier-Stokes equation in cartesian coordinates, neglecting the influence of gravity 

orientation within the body, is expressed as follows [5,11]: 
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By disregarding velocity (tangential), a transformation of variables applied to cartesian equations results in 

the following set of expressions [15]: 
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(6) 

In this context, let f(r,z,t) denote the radial flow component and w(r,z,t) represent the axial flow component 

in the z direction. The continuity equation is expressed as follows: 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 

(7) 

𝛾 is a new variable, where 𝛾 =
𝑟

𝑅(𝑧,𝑡)
 and 𝑅(𝑧, 𝑡) is the radius of the artery. Moreover, the velocity profile is 

in polynomial form: [16] 
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𝑤(𝛾, 𝑧, 𝑡) = ∑ 𝑞𝑘(𝛾2𝑘 − 1)

𝑁

𝑘=1

 

(8) 

In this scenario, q(z,t) represents the variable to be subsequently determined. For simplification, let N=1. Then, 

𝑤(𝛾, 𝑧, 𝑡) = 𝑞(𝑧, 𝑡)(𝛾2 − 1) (9) 
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Eq. (18) is designated the 'master equation' going forward. Models for flow rate and pressure are obtained by 

implementing certain assumptions to this main equation, as detailed. In formulating the flow of the blood 

model, the cross-sectional area of the vessel is considered to be constant. Additionally, it is assumed to remain 

spatially constant, with no variations with axial distance. Furthermore, the pressure gradient is hypothesized 

to exhibit uniformity over the entirety of the distance under consideration. Equation (18) can be written as: 

𝜕𝑄

𝜕𝑡
+

4𝜋𝜇

𝑆
𝑄 +

𝑆

2𝜌

𝜕𝑃

𝜕𝑧
= 0 

(19) 

This constitutes a mathematical model that simplifies a system or phenomenon by focusing on just a single 

spatial dimension-one for representation of the blood flow rate.  The boundary conditions necessary for a 

solution, along with parameter values, can be derived from prior literature within this domain. Poiseuille's 

equation is employed to formulate mathematical model. Poiseuille's equation defines the relationship between 

the flow rate and pressure, expressed below: 

𝑄 =
𝜋𝑅4

8𝐿𝜇
𝑃 

(20) 
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After inserting (45) into (44), a new equation is obtained as follows: 
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(21) 

 

Equation (46) serves as a mathematical representation of blood pressure within the physiological system. The 

necessary boundary conditions and parameter values essential for solving this equation can be acquired from 

prior research conducted within this scientific discipline. 

Pressure gradient, 
𝜕𝑃

𝜕𝑧
= 100 to40 𝑚𝑚𝐻𝑔 

Kinematic viscosity of blood,𝜇 = 0.0035 𝑐𝑚2/𝑆 

Density of blood, 𝜌 = 1.043 to1.057 𝑔/𝑐𝑚3 

Results and Discussion: 

In this study, a validation analysis was conducted on the proposed model. The equation describing the flow 

rate of blood was simplified in MATLAB. Fig. 1 shows the results for the cross-sectional areas. An important 

observation from this plot is the direct correlation between flow rate and area, suggesting that an increase in 

cross-sectional area leads to a greater blood flow rate. This observation aligns with the trends illustrated in 

Fig. 2. In the solution is depicted for varying pressure in Fig. 3. As illustrated, there is a discernible pressure 

differential along the length of the vessel, with higher pressures observed at the vessel's outset than at its 

terminus, thus establishing a pressure gradient. Notably, a heightened pressure gradient serves as a driving 

force for blood flow through vessels. Consistent with established principles [18], the greater the pressure 

gradient is, the more pronounced the rate of flow. Moreover, Fig. 3 demonstrates that under a constant pressure 

gradient, the blood flow rate diminishes over time. Conversely, an increase in the pressure gradient results in 

an increase in the blood flow rate. Blood pressure is formulated by equation (21) and can be resolved by 

MATLAB. Fig. 4 shows the results obtained for various cross-sectional areas. Notably, the plot reveals a 

decrease in blood pressure as the cross-sectional area increases. This observation underscores the relationship 

between blood pressure and cross-sectional area, which is consistent with the trends depicted in Figure 5 

derived from Poiseuille's equation. 

 
Fig. 1. The flow rate varies with the cross-sectional area of the blood vessel. 
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Fig. 2. Illustration of the relationship between the flow rate and vessel radius. 

The solution is depicted for blood vessels of varying lengths by Fig.6. This study, revealed a notable increase 

in blood pressure concomitant with an increase in vessel length. The observed pattern of highest pressure at 

the vessel's outset and lowest pressure at its terminus is consistent with expectations. 

 
Fig. 3. The blood flow rate for different pressure gradients ranging from 40 to 200 mmHg is shown. 
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Figure 4: Blood pressure for different cross-sectional areas of vessels. 

Moreover, the discrepancy between these two pressure sensory points exhibits considerable variation with 

vessel length. This finding aligns with the trends illustrated in Figure 7. In healthy adults, the systolic blood 

pressure typically ranges from 95 to 140 mm Hg, with an average value of approximately 120 mm Hg. 

 
Figure 5: Blood pressure with vessel radius 
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Figure 6: Blood pressure for different vessel lengths 

 
Figure 7: Variation in pressure with vessel length 

However, these figures vary due to factors such as age, dietary habits, climate, and other environmental 

influences. Conversely, normal diastolic blood pressure typically ranges from 60 to 90 mm Hg, with an 

average value of approximately 80 mm Hg. These pressure readings are conventionally measured in arteries 



Akbar and Shah Mathematical Modeling of Blood Flow Dynamics in the Cardiovascular System: Assumptions, Considerations, 

and Simulation Results 

Current Medical Research and Opinion, Vol. 07, Issue. 04, Page no: 2216-2225 

DOI: https://doi.org/10.52845/CMRO/2024/7-4-2             Page | 2224 

located in hand muscles. Fig. 4, 6, demonstrate that the range of pressures observed in the model aligns with 

the normal physiological values expected for an artery, taking length in to consideration [19]. Mathematical 

modeling is a robust methodology for investigating the dynamics of blood flow within the cardiovascular 

system. Through the application of mathematical constructs and the integration of pertinent physiological 

principles, researchers can gain valuable insights into the intricate behavior and functionality of the 

cardiovascular system. Continued research endeavors in this domain hold significant promise for advancing 

our understanding of cardiovascular physiology and fostering the development of innovative diagnostic and 

therapeutic interventions for cardiovascular diseases. 

Conclusion:  

Simulation studies conducted based on the developed mathematical model offer valuable insights into the 

behavior of blood flow under diverse conditions. These simulations enable researchers to explore the effects 

of varying parameters on blood flow dynamics and pressure regulation. Through comparisons between 

simulated results and experimental data, researchers can ascertain the accuracy and predictive capabilities of 

mathematical models. An emerging area with promising applications in therapeutic simulation and medical 

image analysis involves the creation of computerized models depicting human organs. This study specifically 

focused on developing a mathematical model to depict blood flow within the cardiovascular system. Initially, 

the model considered only a few internal parameters; however, there are opportunities for enhancement by 

incorporating additional anatomical structures such as valves, precise heart chamber sizes, and refining the 

constitutive law to achieve a more realistic representation. It is essential to clarify that the primary aim of the 

study was not to construct the most intricate and detailed heart model. Instead, the aim is to study the model's 

complexity and to investigate the effects of alterations in cross-sectional area, pressure gradient, and blood 

channel length on both blood pressure and flow rate. Despite the simplifications introduced through various 

assumptions, the model remains valid because it effectively illustrates how changes in pressure gradients and 

cross-sectional area influence the flow rate and how the length and cross-sectional area of vessels impact blood 

pressure. 
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