DOI: https://doi.org/10.52845/CMRO/2022/5-2-2 ISSN (O) 2589-8779 | (P) 2589-8760

CMRO 05 (02), 1125-1135 (2022)

ORIGINAL RESEARCH

A Detailed Description of Evidence-Based Reported Drug Interaction and Impact in a Tertiary Care Hospital in Kolkata

Dr. Sayantan Ghosh¹, Dr. Arpan Dutta Roy², Mr. Soumyajeet Paul³*, Mr. Tamal Nayak⁴, Dr. Prolay Paul⁵, Mr. Kunal Mukherjee⁶, Mr. Priyabrata Biswas⁷, Dr. Dinesh Kumar Yadav⁸

¹Clinical Pharmacologist & Coordinator AMC, NCC-PvPI Department of Pharmacology AMRI Hospitals Ltd., Mukundapur ²Chief Clinical Pharmacologist, Departmental head of Clinical Pharmacology and research, Ruby general hospital, E. M. Bypass, Sector I, Kasba Golpark, Kolkata, West Bengal 700107 ³Ex-Intern, Dept. of Clinical Pharmacology, Ruby general hospital, E. M. Bypass, Sector I, Kasba Golpark, Kolkata, West Bengal 700107 Email: jishnu.paul.in@gmail.com ⁴Clinical Research Coordinator Ruby general hospital, E. M. Bypass, Sector I, Kasba Golpark, Kolkata, West 700107 Bengal ⁵Clinical Pharmacologist, Narayana Hrudayalaya Hospitals, Bangalore, Karnataka 560099 ⁶Clinical Pharmacologist, Ruby general hospital, E. M. Bypass, Sector IWKess Becogd part (100 1Ko7 lkata, ⁷Senior Clinical Pharmacist, Ruby general hospital, E. M. Bypass, Sector I, Kasba Golpark, Kolkata, West Bengal 700107 Pharmacologist ⁸Clinical Fortis Hospital, Anandapur, Kolkata, West Bengal 700107

Abstract:

Drug interactions are said to occur when the pharmacological activity of a drug is altered by the concomitant use of another drug or by the presence of some other substances. The presence of multiple prescribers, multiple pharmacological effects of a single drug, multiple diseases, poor patient compliance, advancing age of the patient, polypharmacy, and some drug-related problems are some of the factors affecting drug interaction. Drug interactions can lead to ineffective therapeutic response and serious adverse events and therefore, early detection and careful monitoring of it can prevent its occurrence and amplify the therapeutic response. In this study, potential drug-drug interactions were detected and monitored regularly during daily rounds and the relevant interactions were then informed to the consultant physicians, along with the corrective measures. Regular follow-up was done for the patients and the measured taken were well documented. Before this initiative, the concept of drug interaction monitoring was not present in the hospital. However, with the conventional method of the study, the system has been recently updated with an automated referral system. As the study shows a positive impact on the improvement of the patient's quality of treatment and betterment of healthcare, this process of drug interaction monitoring and clinical pharmacy practice will be continued. The role of a clinical pharmacist is to prevent and detect interactions and provide reliable advice on interaction management that can greatly add to patient safety and wellbeing.

Keywords: Drug-interactions, Polypharmacy, Therapeutic monitoring, Toxicity monitoring, Clinical Pharmacist

Introduction:

Drug interactions are said to occur when the pharmacological activity of a drug is altered by the

concomitant use of another drug or by the presence of some other substances [1]. The drug whose activity is affected by such an interaction is called the object drug and the agent which precipitates

such an interaction is referred to as the precipitant [2]. Drug interactions may include drug-drug interactions, food-drug interactions, chemical-drug interactions, drug-laboratory test interactions, and drug-disease interactions. The presence of multiple prescribers, multiple pharmacological effects of a single drug, multiple diseases, poor patient compliance, advancing age of the patient, polypharmacy, and some drug-related problems are some of the factors affecting drug interaction [2,3].

Drug interactions can be effectively managed by identifying the patient risk factors, taking drug history, maintaining complete patient medication records, updating knowledge about pharmacological actions, considering therapeutic alternatives, individualizing the therapy, and performing therapeutic and toxicity monitoring [4]. Drug interactions can lead to ineffective therapeutic response and serious adverse events and therefore, early detection and careful monitoring of it can prevent its occurrence and amplify the therapeutic response. The role of a clinical pharmacist is to prevent and detect interactions and provide reliable advice on interaction management that can greatly add to patient safety and well-being. Pharmacists have a good educational base to develop expertise in drug interactions and make a very valuable contribution to patient management. While all practicing pharmacists need to develop basic and specialized skills in this area and add to the national and international knowledge pool [5,6].

Figure 1: pattern of drug interactions [1,2]

1.1 Types of drug interaction:

These classifications are as per the guidelines. The relevance of a particular drug interaction to a

specific individual will be determined by the clinical pharmacist [1,2].

MAJOR	MODERATE	MINOR
Highly clinically significant.	Moderately clinically significant.	Minimally clinically significant. Minimize
Avoid combinations; the risk of	Avoid combinations, use them	risk and consider an alternative drug, take
the interaction outweighs the	only under special	steps to circumvent the interaction risk, and
benefit.	circumstances.	/or institute a monitoring plan.

Table 1: Classification of drug interactions

Methodology:

The study objective was to develop a series of biologically based hypotheses about clinically important drug-drug interactions. Data were collected between July 2020 to December 2021, during daily rounds for the admitted patients in the hospital and all the relevant demographic and clinical data like the demographic details, number of drugs, number of comorbid conditions, and duration of hospital stay were collected and documented. Prescriptions with polypharmacy and multiple diseased states were identified and the patient's clinical condition was assessed. In the next step, potential drug-drug interactions were identified and categorized using electronic databases such as the Micromedex Drug-Reax System. Along with the corrective measures, the relevant interactions were then informed to the consultant physicians and regular follow-up was done for the patients. The measures taken were documented properly.

- Inclusion Criteria: Admitted patients.
- Exclusion criteria: Day Care and Out-Patient and Minor drug interactions

Figure 2: The process followed to detect and categorize the drug interactions

Results and Discussion:

In the given study, about 26 types of clinically significant drug interactions were observed within a period of about 18 months. The frequency of drug interactions was found to be more in patients with multiple prescribed drugs, multiple diseased conditions, old age and compromised renal state. Hence, in such cases early detection and careful therapeutic and toxicity monitoring play an important preventive role. **Table 2** shows the

details of all the documented drug interactions. After finding the possible interactions in the current study, corrective and preventive measures had been taken by adjusting the dose and frequency of the drug and stopping the drug as per the clinical condition of the patient, if required. The whole process has been carefully documented by the clinical pharmacist in a detailed manner for further references.

Sl.	Drug-	Mechanism of	Severity	Effect	Inference	Actions taken
Ν	Interaction	action				
0.						
1.	Voriconazole +	As voriconazole	Major	Toxicity and	Both these drugs	Voriconazole is
	ivabradine	is a potent		bradycardia	are	administered
		inhibitor of			contraindicated.	after 6 hours of
		CYP450, it may			As the half-life	ivabradine
		significantly			of ivabradine is	exposure.
		increase the			6 hours, the dose	
		plasma			should be	
		concentration of			adjusted	
		ivabradine.			according to	
					that.	
2.	Naproxen+	The proposed	Major	GI toxicity,	7.5-15mg/week	On the day of
	methotrexate	mechanism is		bone marrow	can be given as	administration
		inhibition of		toxicity,	a safe dose to a	of methotrexate,
		renal elimination		anemia.	patient.	naproxen is not
		of methotrexate			Naproxen	administered. It
		and its			should not be	is instead
		metabolite, 7-			given before the	administered on
		hydroxymethotre			dose of	the next day.
		xate.			methotrexate.	
		Naproxen will			The half-life of	
		increase the			naproxen is 3-9	
		plasma			hours, so dose	
		concentration of			adjustment is	
		methotrexate and			required	
		will show			considering that.	
		toxicity.				

Table 2: Description of documented drug interactions

3.	Linezolid+	As linezolid is a	Major	Major changes	Monitoring of	3 rd generation
	serotonergic	MAO-A	-	in blood	the patient is	cephalosporins
	agents	inhibitor, it		pressure and	required with	are administered
	-	increases the		heart rate.	corrective	instead of
		level of			actions like	linezolid.
		serotonin.			frequency and	
					dosage	
					adjustment	
					following the	
					pharmacokinetic	
					characteristics	
					of the drug.	
					The drug can	
					also be	
					substituted.	
4.	Linezolid+	As linezolid is a	Major	Serotonergic	Monitoring of	Linezolid was
	duloxatine	MAO-A		syndrome, like a	the patient is	stopped.
		inhibitor, the		sudden change	required with	
		serum		in blood	corrective	
		concentration of		pressure and	actions like	
		serotonin will be		heart rate with	frequency and	
		increased.		anxiety and	dosage	
				tremors.	adjustment	
					following the	
					pharmacokinetic	
					characteristics	
					Druge can also	
					be substituted or	
					stopped	
5.	Linezolid+	Linezolid	Maior	Serotonergic	Routine	As linezolid has
	levodopa	increases the	5	syndrome, like a	monitoring of	a half-life of 4
	I	level of serotonin		sudden change	the patient is	hours, levodopa
		in the plasma.		in blood	required and the	will be given
		-		pressure and	dose, frequency	after 4 hours of
				heart rate with	of the drug	the interval of
				anxiety and	should be	linezolid.
				tremor.	changed.	
6.	Diltiazem +	Concurrent use	Moderate	By inhibition of	Dose reduction	Dose of
	methylprednisol	may result in an		CYP3A4	should be done	methylprednisol
	one	increased		mediated	in case of long-	one was
		concentration of		metabolism of	term therapy and	reduced.
		methylprednisolo		methylprednisol	persistent	
		ne and enhanced		one.	symptoms.	
		adrenal				
		suppressant				
_		effects.				<u> </u>
7.	Atorvastatin +	Concurrent use	Moderate	CYP3A4	It concomitant	Spacing
	ranoiazine	may result in an		Inediated	use is necessary,	deriveen the
		increased risk of		metabolism of	serum creatinine	arugs were
		atorvastatin		1	kinase levels	aone.

		exposure and		atorvastatin is	and muscle	
		myopathies.		inhibited.	strength should	
					be monitored.	
8.	Haloperidol +	Concurrent use	Major	Additive effects	Coadministratio	Spacing
	quetiapine	leads to an	-	on QT-interval	n should be	between the
		increased risk of			avoided to	drugs were
		QT-prolongation.			present the risk	done.
					of serious	
					cardiac events.	
9.	Duloxetine +	Concurrent use of	Major	Additive	All patients on	The patient was
	Ondansetron	duloxetine and	5	serotonergic	duloxetine	carefully
		serotonergic		effects	therapy should	monitored.
		agents may result			be monitored for	
		in an increased			serotonin	
		risk of serotonin			syndrome,	
						1120
					during initiation.	I
					Discontinue	
					treatment with	
					duloxetine and	
					any concomitant	
					serotonergic	
					agent if	
					symptoms occur	
					and initiate	
					supportive	
					treatment.	
10	Amiodarone +	Concurrent use of	Major	Additive effects	Coadministratio	Quetiapine was
	quetiapine	quetiapine and	5	on QT interval.	n should be	stopped.
		QT interval			avoided to	
		prolonging			prevent an	
		agents may result			increased risk of	
		in an increased			serious cardiac	
		risk of QT			effects.	
		prolongation.				
11	Hydroxychloroq	Concurrent use of	Major	Additive effects	Coadministratio	Quetiapine was
	uine +	quetiapine and		on QT interval.	n should be	stopped.
	quetiapine	QT interval			avoided to	
		prolonging			prevent an	
		agents may result			increased risk of	
		in an increased			serious cardiac	
		risk of QT			effects.	
		prolongation.				
12	Amiodarone +	Concurrent use of	Major	Additive effects	Concomitant	Voriconazole
	Voriconazole	amiodarone and		on QT interval.	administration	was
		QT prolonging			of amiodarone	discontinued.
		agents may result			and a QT	
		in an increased			prolonging	
		risk of QT			agent should be	
		prolongation and			avoided since	
		torsade de			the interaction is	
		pointes.			possible even	

					after the	
					discontinuation	
					of amiodarone.	
13	Linezolid +					
	Atorvaststin					
14	Amitriptyline +	Concurrent use of	Major	Additive effects	Hydroxychloroq	Hydroxychloroq
	Hydroxychloroq	amitriptyline and		on QT interval.	uine is not	uine was
	uine	QT prolonging			recommended in	stopped.
		agents may result			patients taking	
		in an increased			other drugs that	
		risk of QT			are	
		prolongation.			arrhythmogenic.	
15	Levofloxacin +	Concurrent use	Major	Additive effect	Fluoroquinolone	The patient was
	Hydrocortisone	may result in an		of risk for	s should be	regularly
		increased risk of		tendon rupture.	discontinued if	monitored for
		tendon rupture.			the patient	any of the
					experiences	mentioned signs.
					pain, swelling,	
					inflammation, or	
					rupture of a	
					tendon.	
16	Gabapentin +	Concurrent use of	Major	Additive CNS	If gabapentin	Dose of
	Tramadol	gabapentin and		depression.	was	gabapentin was
		CNS depressants		_	coadministered	reduced.
		may result in			with another	
		respiratory			CNS depressing	
		depression.			agent, especially	
		_			an opioid and in	
					patient with	
					underlying	
					respiratory	
					impairment,	
					monitor for	
					symptoms of	
					respiratory	
					depression and	
					sedation,	
					consider	
					initiating	
					gabapentin at a	
					low dose.	
17	Tramadol +					
.	Hydroxychloroq					
	uine					
18	Posaconazole +					
.	Rivaroxaban					
19	Torsemide +	Concurrent use	Moderate	Unknown	Avoid	Signs of
	Amikacin	results in an			concomitant use,	ototoxicity were
		increased risk of			since torsemide,	being carefully
		ototoxicity.			a loop diuretic,	monitored.
					increases the	

					ototoxic	
					potential of	
					other ototoxic	
					drugs like	
					aminoglycoside	
					antibiotics.	
20	Fluconazole +	Concurrent use of	Major	Inhibition of	Concomitant use	The dose of
20	Alprazolam	alprazolam and	Major		should be	alprazolam was
•	ruprazolam			modiated	avoided so as to	reduced
		inhibitors may		metabolism of	avolueu so as to	Ieuuceu.
		result in		alprazolam	of adverse	
		increased			effects. If	
		alprazolam			concomitant use	
		exposure.			is unavoidable,	
					dose reduction	
					should be	
					considered.	
21	Fluconazole +	Concurrent use	Major	Unknown	If concomitant	Dose of
•	Atorvastatin	may result in an			use is necessary,	atorvastatin was
		increased risk of			use the lowest	reduced.
		myopathy or			atorvastatin dose	
		rhabdomyolosis			and closely	
					monitor patients	
					for signs of	
					muscle pain,	
					tenderness, and	
					weakness.	
22	Quetiapine +	Concurrent use of	Major	Additive effects	Coadministratio	Quetiapine was
	Ivabradine	quetiapine and		on QT interval.	n should be	stopped.
		QT interval			avoided to	
		prolonging			prevent an	
		agents may result			increased risk of	
		in an increased			serious cardiac	
		risk of QT			effects.	
		prolongation.				
23	Amitryptyline +	Concurrent use of	Major	Additive effects	Coadministratio	The patients
.	Ivabradine	quetiapine and	5	on QT interval.	n should be	ECG was
		OT interval			avoided to	carefully
		prolonging			prevent an	monitored.
		agents may result			increased risk of	
		in an increased			serious cardiac	
		risk of OT			effects And	
		prolongation			closely monitor	
		protongation.			the cardiac	
					functions	
24	Prednisolone	Concurrent use	Major	Additive effect	Fluoroquinolono	The nationt was
24	I evoflovacin	may result in an	14101	of rick for	s should be	regularly
.		increased risk of		tendon runture	discontinued if	monitored for
		tendon runtura		tondon rupture.	the nationt	any of the
		tendon rupture.			experiences	mentioned signs
					nain swelling	mentioned signs.
					inflormation	
L					minamination, or	

					rupture of a	
					tendon.	
25	Spironolactone	Concurrent use of	Major	Increased	Concomitant use	The drugs were
	+ Ramipril	potassium-		potassium	should be	spaced.
		sparing diuretics		retention due to	avoided and	_
		and ACE		lowered	serum potassium	
		Inhibitors may		aldosterone	levels should be	
		result in		levels.	regularly	
		hyperkalemia			monitored.	
26	Clarithromycin	Concurrent use of	Contraindica	Inhibition of	Concomitant use	Clarithromycin
•	+ Eplerenone	eplerenone and	ted	CYP3A mediate	of both is	was changed.
		strong CYP3A		eplerenone	contraindicated.	
		inhibitors may		metabolism		
		result in				
		increased serum				
		levels of				
		eplerenone				
27	Clarithromycin	Concurrent use of	Contraindica	Inhibition of	Concomitant use	Clarithromycin
	+ Ivabradine	ivabradine and	ted	CYP3A4	of both is	was changed.
		strong CYP3A4		mediated	contraindicated.	
		inhibitors that		metabolism of		
		prolong the QT-		ivabradine and		
		interval may		additive QT-		
		result in		interval		
		increased		prolongation		
		exposure of				
		ivabradine and				
		increased risk of				
		QT-prolongation.				
28	Clarithromycin	Concurrent use	Major	Inhibition of	Evaluate the	Atorvastatin was
•	+ Atorvastatin	may result in		CYP3A4	risk-benefit ratio	used at the
		increased		mediated	of using both of	lowest possible
		atorvastatin		atorvastatin	the drugs	dose.
		exposure and		metabolism by	together and do	
		increased risk of		clarithromycin.	not exceed	
		myopathy or			atorvastatin	
		rhabdomyolysis.			doses of 20 mg.	
					Regularly	
					monitor the	
					signs and	
					symptoms of	
					myopathy or	
					rhabdomyolysis.	

Conclusion:

Early detection of potential drug interactions will provide a broad picture of the risks, improve therapeutic outcomes, minimize the drug adverse effects and treatment cost, and also assist the clinicians in designing the treatment regimen. Before this initiative, the concept of drug interaction monitoring was not present in the hospital. However, with the conventional method of the study, the system has been recently updated with an automated referral system. The clinical pharmacist will be automatically informed if any patient is prescribed more than twelve drugs at a time. As the study shows a positive impact on the improvement of the patient's quality of treatment and betterment of healthcare, this process of drug interaction monitoring and clinical pharmacy practice will be continued.

References:

[1] Magro L, Moretti U, Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug–drug interactions. *Expert Opin Drug Saf.* 2012;11:83–94.

[2] Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. *Lancet.* 2000;356:1255–9.

[3] Ayvaz S, Horn J, Hassanzadeh O, et al. Toward a complete dataset of drug–drug interaction

information from publicly available sources. J Biomed Inform. 2015;55:206–17.

[4] Mousavi S, Ghanbari G. Potential drug-drug interactions among hospitalized patients in a developing country. *Caspian J Intern Med.* 2017;8(4):282-288. doi:10.22088/cjim.8.4.282

[5] Jankel CA, Fitterman LK. Epidemiology of drug-drug interactions as a cause of hospital admissions. *Drug Saf.* 1993;9:51–9].

[6] Vonbach P, Dubied A, Krähenbühl S, Beer JH. Prevalence of drug–drug interactions at hospital entry and during hospital stay of patients in internal medicine. *Eur J Intern Med.* 2008;19:413–20.

How to cite this article: Ghosh, S., Roy, A. D., Paul, S., Nayak, T., Paul, P., Mukherjee, K., Biswas, P., & Yadav, D. K. (2022). A Detailed Description of Evidence-Based Reported Drug Interaction and Impact in a Tertiary Care Hospital in Kolkata. Journal of Current Medical Research and Opinion, 5(02), 1125-1135. https://doi.org/10.52845/CMRO/2022/5-2-2